o
1é
[}
+
b
\
‘ oy,

BASIC Language

Reference Manual

olivetti L1

BASIC Language

Reference Manual

olivetti L1

PREFACE

This 1s a simple guide to the use
of BASIC on the OLIVETTL M20
System. It introduces the reader
to BASIC, with the help of many
figures, tables and examples.
Related statements and commands
are dealt with in the same chap-
ter,

" ALL BASIC STATEMENTS, COMMANDS,

Related Publications
L1 M20
Professional Computer Operating

System (PCOS) User Guide

DISTRIBUTION: General (G)

THIRD EDITION: December 1982

AND FUNCTIONS ARE LISTED IN AL-
PHABETICAL ORDER IN APPENDIX E,

FOR SPEEDY REFERENCE.

Previous programming experience 1is
not strictly required. Only a
basic knowledge of data processing
is assumed.

The following are trademarks of
Ing. C. Olivetti & C. S.p.A.:
QLICOM, GTL, OLITERM, OLIWORD, OLINUM,
OLISTAT, OLITUTOR, OLIENTRY, OQLISORT,
OLIMASTER.

MULTIPLAN 1is a registered trademark of
MICROSOFT Inc.

MS-DOS is a trademark of MICROSOFT Inc.
CP/M and CP/M-86 are registered
trademarks of Digital Research Inc.
CBASIC-86 1is a trademark of Digital

Research Inc.

©1982, by Olivetti

RELEASE: 1.3 onwards

PUBLICATION 1SSUED BY:

Ing. C. Olivetti & C. S.p.A.
lervizio Centrale Documentazione
77, Via Jervis-10015 1VREA (Iltaly)

availabite 1ot lulute 1eleases

H

(71 Ttus pubis

=

/L/ 3984260 X

OPERATIONS A\
NSTALLATION INTROQULCT.ON G
LIBRARY MANUAL THESYSTEM
N\
MULTIPLAN PRINTER PR 2400 ~ Soemar ~ -
USER GUIDE OPERATING GUIDE - s e
2 =
Q
=
AR L N\ |2
_ o
OLIWORD g z PRINTER PR 1450]
USER GUIDE ™ y OPERATING GUIDE 4
[} P =
2 NE \ | g
© g —_ ©
g OLIENTRY 8 - PRINTER PR 1471 e]
3 USER GUIDE ("1 & z OPERATING GUIDE 3
a
o =)
3 N\ | |E AN
™ <
3 OLIMASTER -4 — PRINTER PR 148
[l USER GUIDE “ 5 OPERATING GUIDE
x
APPLICATION = \ =] \
e
SOFTWARE 3 <
2 OLISTAT Statistical Anaiysis) =4 PRINTER PR 430
LIBRARY 3 « USEA GUIDE l 3 > OPERATING GUIDE
\ 3 o
-
Nk \ | |8 \
ouvTon 3 e 2 I
b= GEOMETALI ZUNCTIONS 4 OPEAAT NG GULE
= USER GUIDE ° @ OPERAT MG GuItE
Q o
(Y5 b g
X § \ 2
PCOS Protessional Computer D STL20 8 =aR0 = 5K
Coeraling System: R TICL PATHS] CPERAT MG LuilE
© USER GUIDE o USER GUIDE - T
2 14 o
~ N
2 A 13 ARE
@ © o
g BASIC LANGUAGE [OLINUM (Numerical Analysis) a
a REFERENCE MANUAL o > USER GUIDE <
Q = Q
=]
2 AERE: . AR \
& 2 X 3 —
@ & BASIC & PCOS & OLSORT @
i = POCKET REFERENCE il USER GUIDE ™
[- % -
8 N\ | |B
P W A
3] S
-1 28000 ASSEMBLER 2
™ REFER
< EFERENCE MANUAL w
o Q
N 7]
PROGRAMMING | | S A | |§ 2\
@ ©
] ASSEMBLER LANGUAGE @
LIBRARY ™ JUSER GUIDE N b
=
AN =
AL N\ N\
S
D ASSEMBLER LANGUAGE
e 4 REFERENCE CARD
o
[
A\ © AN AN
110 WITH EXTERNAL § ISAM (index Sequential
PERIPHERALS Access Method)
USER GUIDE a USER GUIDE
A N\
/IDEOTEX T FORTRAN LANGUAGE
USER GUIDE (" § 2 REFERENCE MANUAL (°)
g \ | |2 \
b >
-] OLICOM = PASCAL LANGUAGE
o
S s USER GUIDE o - REFERENCE MANUAL (*)
o
™
M
2 OLITERM 3 MS.00S
E4 < USER GUIDE © o GUIDE TO THE USE ON THE M20
2 \ | |2 AN
S =
§ > MS.00S
@ b4 OPERATING SYSTEM
> > DOCUMENTATION LIBRARY
ADVANCED b \ § \
FACILITIES § 3 \
LIBRARY 3 a

(") This publication wiil be made avallable tor Juture releases

OPERATIONS
LIBRARY

APPLICATION
SOFTWARE
LIBRARY

2\

N\

BASIC 30
REFERENCE MANUAL

N

N

N\

N

N\

N

/
i

CPIM-86
z GUIDE TO THE USE ON THE M20
2
S N\
-4 CP'M-86
5] OPERATING SYSTEM
-3 DCCUMENTATION LIBRARY
2 \
2
=3 CBASIC/86
Ry z RAEFERENCE MANUAL
<Q
A \
g EIGHTBIT EMULATOR
s USER GUIDE
>
=}
N
PROGRAMMING | | 2 A\
TRANS818
LIBRARY] USER GUIDE
<
AN o
AR
n
§ CPIM
™ CPERATING SYSTEM MANUAL
a
3
™ OPERATING SYSTEM
L] COMMAND SUMMARY
N\ |8
<
>
3
- X
Q
\ 3
<
TX ;
[=1]
™
ADVANCED N\
FACILITIES
LIBRARY

)

ORI s i
* B

CONTENTS

. WHAT 1S BASIC?

THE BAS1C LANGUAGE

PCOS AND BASIC

ENVIRONMENTS

USING THE KEYBOARD

ENTERING CHARACTERS

CONTROL CHARACTERS

CORRECTING TYPING ERRORS

USING THE M20
AS A CALCULATOR

A SAMPLE PROGRAM

KEYWCRDS

CONSTANTS

VARIABLES

FUNCTIONS

EXPRESSIONS

THE USE OF BLANKS

COMMENTS

RUNNING OUR PRGGRAM

MODES OF OPERATION

COMMAND MODE
EXECUTION MODE
LINE EDIT MODE

BAS1C STATEMENTS AND
COMMANDS

1-1

1-1

1-2

1-3

1-5

1-5

1-7

1-8

1-9

1-9

1-9

1-10

CHANGING MODE
OR ENVIRONMENT

. ENTERING, LISTING, AND

EXECUTING A PROGRAM
NOTATION CONVENTION

DOCUMENTING A PROGRAM

REM/COMMENT FI1ELDS
(PROGRAM)

ENTERING A PROGRAM

AUTO (IMMEDIATE)
MEW (PROGRAM/IMMEDIATE)

LISTING A PROGRAM

LIST/LLIST (IMMEDIATE)

PROGRAM AND DATA FILES

FILE AND VOLUME
IDENTIFIERS

PASSWORDS

VOLUME PASSWORD

FILE PASSWORD

WRITE PROTECTION

SAVING A PROGRAM

SAVE (PROGRAM/IMMEDIATE)

LOADING A PROGRAM

LOAD (PROGRAM/IMMEDIATE)

EXECUTING A PROGRAM

RUN (PROGRAM/IMMEDIATE)

1-19

2-1

2-2

2-20

2-24

2-24

2-26

2-26

3. UPDATING AND MODIFYING

A PROGRAM

DELETING LINES

DELETE (IMMEDIATE)

REPLACING LINES

INSERTING LINES

RENUMBERING LINES

RENUMBERING AND CROSS-
REFERENCES

RENUM (IMMEDIATE)

CHANGING LINES WITH THE
LINE EDITOR

EDIT (IMMEDIATE)

LINE EDIT MODE COMMANDS

EXAMINING CURRENT
VARTABLE VALUES

RENAMING A FILE

NAME (PROGRAM/IMMEDIATE)

DELETING A FILE

KILL (PROGRAM/IMMEDIATE)

MERGING PROGRAMS

MERGE (PROGRAM/IMMED1ATE)

L1STING THE NAMES OF
SAVED FILES

FILES (PROGRAM/IMMEDTATE)

3-1

3-2

3-3

3-4

3-4

3-5

3-6

3-7

3-7

3-8

4.

DATA

CONSTANTS AND VARIABLES

CONSTANTS

VARTABLES

HOW BASIC NAMES VARTABLES

REPRESENTATION OF NUMBERS

BINARY REPRESENTATION

HEXADECIMAL AND OCTAL
REPRESENTATIONS

HOW BASIC CLASSIFIES

CONSTANTS

NUMERIC DATA

STRING DATA

NORMAL TYPING CRITERIA
TO CLASSIFY CONSTANTS

TYPE DECLARATION TAGS

HOW BASIC CLASSIFIES

VARLABLES

DEF INT/DEFSNG/
DEFDBL/DEFSTR
(PROGRAM/IMMED1ATE)
TYPE DECLARATION TAGS

NUMERIC CONVERSIONS

SINGLE OR DOUBLE
PRECISION TO INTEGER

INTEGER TO SINGLE OR
DOUBLE PRECISION

L L tma e g v

4-1

4-1

4-1

4-1

4-2

4-2

4-6

4-6

4-7

4-9

4-10

4-13

CONTENTS

SINGLE TO DOUBLE
PRECLSION

DOUBLE TO SINGLE
PRECISION

ILLEGAL CONVERSIONS

SUSSCRIPTED VARIABLES
AND ARRAYS

ONE DIMENSIONAL ARRAYS
MULT1 DIMENSIONAL ARRAYS
DIM (PROGRAM/IMMEDIATE)
ERASE (PROGRAM/IMMEDIATE)

OPTION BASE
(PROGRAM/IMMED1ATE)

. HOW BASIC INPUTS DATA

ASSTGNMENT STATEMENTS

CLEAR (PROGRAM/IMMEDIATE)
LET (PROGRAM/IMMEDIATE)
SWAP (PROGRAM/IMMEDIATE)

THE INTERNAL DATA FILE

DATA/READ/RESTORE
(PROGRAM)

INPUT STATEMENTS

INPUT (PROGRAM)
LINE INPUT (PROGRAM)
. EXPRESSIONS

NUMERIC EXPRESSIONS

4-14

4-15

4-16

4-16

4-22

4-23

5-1

5-1

5-3

5-4

5-5

6-1

STRING EXPRESSIONS

RELATIONAL EXPRESSIONS

LOGICAL EXPRESSIONS

OPERATOR PRIORITY

. HOW BASIC OQUTPUTS DATA

SETTING THE NUMBER OF
NULLS AND THE WIDTH

NULL (PROGRAM/IMMEDIATE)
WIDTH (PROGRAM/IMMEDIATE)

STANDARD FORMAT

LPRINT/PRINT
(PROGRAM/IMMEDTATE)

WR1TE (PROGRAM/IMMEDIATE)

USER DEFINED FORMAT

LPRINT USING/PRINT USING
(PROGRAM/IMMEDIATE)

. CONTROL STATEMENTS

UNCONDITIONAL BRANCHES

GOTO (PROGRAM/IMMEDIATE)

ON...GOTO
(PROGRAM/IMMEDIATE)

CONDITIONAL BRANCHES

IF...GOTO...ELSE/
1F...THEN...ELSE
(PROGRAM/IMMED1ATE)

LOOPS

6-8

6-9

6-12

6-15

7-1

7-11

7-12

8-1

8-1

8-3

3-4

8-9

vii

FOR/NEXT 8-11 SQR 9-17

(PROGRAM/IMMEDTATE)
TAN 9-18
WHILE/WEND 8-20
(PROGRAM/IMMEDTATE) BUILT-IN STRING 9-19
FUNCTIONS
9. FUMCTIONS
ASC 9-19
INTRODUCTION 9-1
CHRS 9-20
USER DEFINED FUNCTIONS 9-2
HEX$ 9-21
DEF FN (PROGRAM) 9-3
INKEY$ 9-22
BUILT-IN NUMERIC 9-5
EUNCTIONS INPUTS 9-23
ABS 9-6 INSTR 9-24
ATN 9-6 LEFTS 9-25
CDBL 9-7 LEN 9-26
CINT 9-8 H10% 9-27
oS 9-8 MID$ (PROGRAM/IMMEDIATE) 9-28
CSNG 9-9 0CTS 9-30
EXP 9-10 RIGHTS 9-31
FIX 9-10 SPACES 9-32
FRE 9-11 STRS 9-33
INT 9-12 STRINGS 9-34
LOG 9-13 VAL 9-35
RND 9-14 INPUT/OUTPUT AND SPECIAL 9-36
BULLT-IN FUNCTIONS
RANDOMIZE 9-15
(PROGRAM/ IMMEDIATE) DATES/TIMES 9-37
SGN 9-16 CVD 9-38

SIN 9-17 eVl ¢.-38

CONTENTS

10.

CVs
EOF
ERL
ERR
Loc
LPOS
MKDS
MK1$
MKS$
SPC
TAB
VARPTR
SUBPROGRAMS

BAS1C SUBROUTINES

GOSUB/RETURN (PROGRAM)

ON...GOSUB/RETURN
(PROGRAM)

PCOS COMMANDS CALLED

FROM BASIC AND ASSEMBLY

LANGUAGE SUBPROGRAMS

CALL (PROGRAM/IMMEDIATE)

EXEC (PROGRAM/IMMEDIATE)

SYSTEM
(PROGRAM/IMMEDTATE)

PROGRAMMABLE KEYS

9-38

9-38

9-38

9-38

9-39

9-39

9-39

9-40

9-40

9-40

9-41

9-42

10-1

10-3

10-7

10-8

10-9

10-11

10-12

10-13

1.

12.

PROGRAM SEGMENTATION

WHEN USING PROGRAM
SEGMENTATION

PASSING DATA

PROGRAM CHAINING

CHAIN (PROGRAM)

COMMON (PROGRAM)

DISK FILE HANDLING

SEQUENTIAL AND RANDOM
FILES

SEQUENTIAL FIlLeS

RANDOM FILES

OPENING AND CLOSING
FILES

OPEN
(PROGRAM/IMMED1ATE)

CLOSE
(PROGRAM/1MMEDLATE)

WRITING A SEQUENTIAL
FILE

PRINT#
(PROGRAM/IMMEDIATE)

PRINT# USING (PROGRAM/
IMMEDIATE)

WRITE#
(PROGRAM/IMMEDIATE)

LoC

11-1

12-1

12-2

12-3

12-3

12-4

12-7

12-9

12-10

12-16

12-17

12-18

13.

READING A SEQUENTIAL
FILE

INPUT#
(PROGRAM/1MMEDTATE)

LINE INPUT#
(PROGRAM/IMMEDTATE)

EOF

UPDATING A SEQUENTIAL
FILE

DEFINING A RECORD LAYOUT

FIELD (PROGRAM/IMMEDIATE)

WRITING RECORDS TO A
RANDOM FILE

LSET/RSET
(PROGRAM/IMMEDIATE)

MK1$/MKSS/MKDS

PUT-File
(PROGRAM/IMMEDIATE)

LOC

READING RECORDS FROM A

RANDOM FILE

GET-File
(PROGRAM/IMMEDIATE)

CV1/CVS/CVD

UPDATING RECORDS OF A
RANDOM FILE

DEBUGGING AND ERROR
RECOVERY

TYPES OF ERRORS

12-19

12-20

12-23

12-26

12-27

12-27

12-28

12-30

12-31

12-33

12-35

12-37

12-38

12-39

12-41

12-42

13-1

14.

TRACING PROGRAM
cXECUTION

TRON/TROFF
(PROGRAM/IMMEDIATE)

INTERRUPTING PROGRAM

EXECUTION

END (PROGRAM)
STOP (PROGRAM)
CONT (IMMEDIATE)

ERROR TESTING

AND RECOVERY

ERROR
(PROGRAM/IMMEDIATE)

ON ERROR GOTO
(PROGRAM)

ERL/ERR
RESUME (PROGRAM)
GRAPHICS

INTRODUCTION

WINDOWS

OPENING WINDOWS

WINDOW - TO OFEN
A WINDOW
(PROGRAM/IMMEDIATE)

WINDOW - TO SET WINDOW
SPACTiNG
(PROGRAM/IMMEDIATE)

USING THE WINDOWS

13-2

13-2

13-3

13-4

13-4

13-5

13-7

13-8

13-9

13-11

13-13

14-1

14-2

14-3

14-3

14-6

14-9

CONTENTS

WINDOW TO SELECT 14-10 PRESET 14-32
A WINDOW (PROGRAM/ (PROGRAM/IMMEDIATE)
IMMEDIATE)
PAINT 14-33
COLOR - GLOBAL COLOR 14-13 (PROGRAM/IMMEDIATE)
SET SELECTION
(PROGRAM/IMMEDIATE) POINT 14-36
(PROGRAM/IMMEDIATE)
COLOR 14-13
(PROGRAM/IMMEDIATE) SPECTAL STATEMENTS 14-37
CLS (PROGRAM/IMMEDIATE) 14-14 GET-Graphics 14-37
(PROGRAM /IMMEDIATE)
SCALE 14-15
(PROGRAM/IMMEDIATE) PUT-Graphics 14-39
(PROGRAM/IMMEDIATE)
SCALEX 14-18
DRAW (PROGRAM/IMMEDIATE) 14-42
SCALEY 14-19
GRAPHICS FACILITIES 14-45
CLOSING WINDOWS 14-20 PROVIDED BY PCOS
CLOSE WINDOW 14-20 A. ASCII1 CODES A-0
(PROGRAM/IMMEDIATE)
B. ASCI1 CHARACTER B-0
DISPLAYING CURSORS 14-21 EQUIVALENCES
CURSOR 14-21 C. ERROR CODES AND THEIR C-1
(PROGRAM/IMMEDIATE) MEANING

POS (PROGRAM/IMMEDIATE) 14-24 D. DIFFERENCES BETWEEN PCOS D-1
RELEASES AFFECTING BASIC

DRAWING LINES, 14-25
RECTANGLES, AND CIRCLES E. BASIC STATEMENTS, E-1
COMMARDS AND FUNCTIONS

LINE 14-25

(PROGRAM/IMMEDIATE)

CIRCLE 14-29

(PROGRAM/IMMEDIATE)

DISPLAYING POINTS AND 14-31

PAINTING FIGURES

PSET 14-32
(PROGRAM/IMMEDIATE)

1. WHAT IS BASIC?

ABOUT THIS CHAPTER

This chapter introduces you to the Model 20 (M20) BASIC language. It
illustrates the PCOS (Professional Computer Operating System) and BASIC
environments, and the use of the Keyboard. Moreover, 1t tells the user
how to use the machine as a calculator, how to enter and run a program,
and the modes of operation in BASIC.

CONTENTS

THE BASIC LANGUAGE 1-1 RUNNING OUR PROGRAM 1-13
PCOS AND BASIC ENVIRONMENTS 1-1 MODES OF OPERATION 1-15
USING THE KEYBOARD 1-2 COMMAND MODE 1-15
ENTERING CHARACTERS 1-3 EXECUTION MODE 1-17
CONTROL CHARACTERS 1-4 LINE EDIT MODE 1-17
CORRECTING TYPING ERRORS 1-5 BASIC STATEMENTS AND 1-18

COMMANDS
USING THE M20 AS A CALCULATOR 1-5

CHANGING MODE OR ENVIRONMENT 1-19

A SAMPLE PROGRAM 1-7
KEYWORDS 1-8
CONSTANTS 1-9
VARIABLES 1-9
FUNCTIONS 1-9
EXPRESSIONS 1-10
THE USE OF BLANKS 1-12

COMMENTS 1-13

WHAT IS BASIC?

THE BASIC LANGUAGE

BASIC (Beginner's All-purpose Symbolic Instruction Code) 1s a general
purpose high-level programming language.

YOU CAN USE BASIC TO SOLVE BOTH BUSINESS AND SCIENTIFIC PROBLEMS.

BASIC 1S EASY TO LEARN AND USE, AS IT CONSISTS OF SELF-EXPLANATORY STATE-
MENTS AND COMMANDS.

Different BASIC versions are available on different computers. The first
was developed at Dartmouth College by John G. Kemeny and Thomas E. Kurts.
From now on, when we speak of BASIC we refer to the version used on the
Model 20 (M20).

THE M20 BASIC 1S A MICROSOFT BASIC VERSION, EXTENDED WITH GRAPHICS AND
1EEE 488 STANDARD INTERFACE PACKAGES.

PCOS AND BASIC ENVIRONMENTS

The M20 System may be simply defined as a computer and a set of programs
supplied by Olivetti. These "System Programs' are resident on a 5 1/4 in.
floppy disk (system disk). Theymay be loaded onto the hard disk in an M20
hard disk system.

The System Programs, which include PCOS and BASIC, permit you to instruct
the computer 1in a manner similar to human language. They work by
converting your instructions into a machine-language understood by the
computer itself. You interact with the computer using PCOS and BASIC
commands and sets of statements referred to as BASIC programs.

Note: From now on we shall use:

- diskette instead of 5 1/4 in. floppy disk, for brevity;
- disk instead of either a diskette or the hard disk.

SYSTEM PROGRAMS

Initialize a disk Enter a program
Name a disk PCOS BASIC List a program
Copy a disk Save a program
List the directory Execute a program
Assign a password Debug a program
Create a file Modify a program
Write — protect a file Use the M20 as a calculator
E Draw pictures
:

Figure 1-1 System Programs

USING THE KEYBOARD

The keyboard allows entry of all the standard text and control charac-
ters.

Alphanumeric Section

()

SPACE Numeric Section

Figure 1-2 The Keyboard (USA-ASCI1 Version)

Note: All the characters shown in this manual refer to the USA-ASCIIL
Keyboard. Appendix B shows the national equivalents for those ASClI
characters which will appear on the display screen or printer.

WHAT IS BASIC?

When we want to specify the keys the user must press to perform a certain
action, we shall show the exact sequence of keys in reverse (white on
black): the keys illustrated in reverse in figure 1-2 are also included
in this sequence; for example:

By convention, we use to indicate any of the three carriage
return/line-feed keys (i, I, and)y to indicate the
space bar, and to indicate either of the two shift keys. (Only
USA ASCIT and USA-ASCIL with BASIC verbs keyboards have SHIFT written on
the keys).

When we want to remind the user to press to send a line to the

system, we shall show at the end of the line. For example:

DELETE 199 - 2¢¢

ENTERING CHARACTERS

IF...

you press a key (or
a combination of keys)

you want to enter a
lower case character
or the lower symbol on
those keys containing
two symbols

you want to enter
upper case characters
or the upper symbol
on these keys con-
taining two symbols

you want to enter a
number

THEN. ..

the character it represents is immediately shown
on the screen. When <characters are being
entered, the blinking cursor (Jl}) indicates the
position the next character will occupy

just press the key, e.q. Y for a

hold down one of the two IEII{AM keys and press
the corresponding key, e.q. JHIZE KW for A.

YOU MAY ENABLE OR DISABLE SHIFT LOCK FOR LETTERS

(A-2) BY PRESSING NELLIND (see Control

Characters below)

use either the top row of the alphanumeric

section, or the numeric section

you hold down a key
for more than a
moment

you want to send a
line to the system (a
BASIC line, a PCOS
command, or data in
response to an INPUT/
LINE INPUT statement)

you want to move the
cursor to a new line
before reaching the
margin

CONTROL CHARACTERS

the corresponding character 1s entered repeat-
edly, until you release the key

press J[J, which positions the cursor at the
beginning of the next line on the screen.

you must press [HIIdM the requisite number of
times

Control characters are entered when pressing either [SEIWE or LI
and another key together. The table below summarises all the M20 control

characters.

IF you press...

CTRL
(Break)

CTRL

CTRL

(Backspace)

CTRL W RESET

(Logical Reset)

THEN. ..

you interrupt program execution. M20 returns to
BASIC Command Mode and displays Ok (if you are
in BASIC) or to PCOS and displays > (if you are
in PCOS). See also 'Correcting Typing Errors"
below

the cursor changes its shape and blink rate and
the display of entered characters is suppressed

(Hide State).

TO RETURN TO NORMAL DISPLAY STATE YOU MUST PRESS

CTRL AGAIN, OR

the 1last character typed 1is deleted and the
cursor is moved one position to the left

the memory is cleared and PCOS is loaded again
from disk

;

-~

WHAT IS BASIC?

CTRL screen output is suspended

THE SUSPENDED OUTPUT 1S RESUMED BY TYPING ANY

KEY

CTRL | HOME | Insert State is exited, while remaining in Line
(Escape) Edit Mode (see Chapter 3)

COMMAND enables Shift Lock for letters (A-Z).

TO DISABLE SHIFT LOCK, PRESS [ESOGLLLI]
AGAIN

———

CORRECTING TYPING ERRORS

You can correct typing errors either before or after you have sent a line
to the system.

1F you notice an error THEN. .. OR...

before you have com- delete the last move the cursor to the

pleted a line (i.e. character(s) by next line by

before pressing LN B and and retype the line

retype it/them

after you have com- enter the line enter Line Edit Mode

pleted a line (i.e. correctly with the and use Line Edit Mode

after pressing A, same line number Commands (see Chapter
AND 1F THE NEW LINE WILL 3)

the line is a program REPLACE THE OLD ONE

lire

USING THE M20 AS A CALCULATOR

You may use the M20 as a calculator for quick computation, and debugging
purposes.

You are in BASIC. The special prompt Ok is on the screen.

You may enter I IKH [N | (or simply JHE)., followed by an ex-

pression and J[GE. The expression is evaluated and its value displayed.
You may also enter | E | followed by a variable name (a string of
characters whose first character is a letter), followed by an assignment
operator (=), then by an expression, and M. The expression is
evaluated and its value assigned to the variable. You may use the
variable to represent that value in successive computations.

The following table gives some examples.

DISPLAY COMMENTS
PRINT 3 the constant 3 is displayed (a constant may be
3 considered a simple expression)
Ok
PRINT 2+3 the expression 2+3 1s evaluated, and its value
5 (5) is displayed
Ok
LET A=15.21 the constant 15.21 1s assigned to the variable
Ok A. You may use A in successive computations to
represent this value
?2A-1 the expression A-1 1is evaluated, and its value
14.21 (14.21) is displayed.
Ok
Note: ? 1is equivalent to PRINT
B=2.3 the constant 2.3 is assigned to the variable 8.
Ok The keyword LET 1s optional, you may begin with
a variable name
?7A*B the expression A*B 1is evaluated. The symbol *
34.983 means 'multiplied by". Its value (34.983) is
Ok displayed
?A*B-40 the expression A*B-4¢ 1is evaluated, and 1its
-5.917 value (-5.017) is displayed.
Ok

Note: 1f a value is negative, the minus sign is
displayed, if a value 1is positive, no sign 1is
displayed

WHAT IS BASIC?

A SAMPLE PROGRAM

You may aslso use the M20 to enter and run BASIC programs.

By writing and running a program you may solve problems that could not be
solved using the M20 as a calculator,

A BASIC program consists of a series of statements. A statement is a
complete instruction in BASIC, telling the M20 to perform specific op-
erations.

You may enter either one or several statements per line. In the latter
case, each statement must be separated by a colon (:).

Each line in a BASIC program begins with a line number: an integer
greater than or equal to ¢ and less than or equal to 65529 and ends when

you press K.

You are in BASIC. The special prompt Ok is on the screen. A sample prog-
ram may be constructed by entering the following statements:

1@ REM RECTANGLE1

29 INPUT '"Length":L

3¢ IF L <=0 THEN 2¢

49 INPUT "Width';w O

5¢ IF W<=@ THEN 4¢

60 LET AREA=L*W

7@ PRINT "Area='";AREA;" L="5L;" w=";w
8@ GOTO 2¢

9¢ END

The problem is to find the area of a rectangle by entering the values of
length and width via the keyboard. 1t has been selected both for its
simplicity and to illustrate a variety of BASIC features. Other more
concise solutions exist (as we shall see in Chapter 3),

You have entered one statement per line. You could also enter more than
one statement per line, using the colon (:) as statement separator and
reducing the number of lines. For example:

19 REM RECTANGLEL

2@ INPUT "Length";L:IF L <=@ THEN 2¢
3¢ INPUT "Width'";W:IF W<=@ THEN 3@
4% LET AREA=L*W

5@ PRINT "Area=";AREA;" L=";L;" W='";W
6@ GOTO 2¢:END

You may enter up to 255 characters per (logical) line, including the line
number. A logical line may appear on the screen on several physical
lines. For example:

2@ INPUT '"Length";L:IF L<=@
THEN 20

1s one logical line divided into two physical lines. To change lines
before reaching the margin press the Y43 key the requisite number of
times.

KEYWORDS

Each statement begins with a keyword (or reserved word). The keyword is a
mnemonic of an English word. 1t must be preceded and followed by at least
one blank.

Note: You may not use a keyword as a variable name.

The keyword defines the type of statement to be carried out. One or more
operands (constants or variables) or expressions follow the keyword. Some
statements have more than one keyword e.g. IF... THEN. The statements of
our program contain the keywords REM, INPUT, 1F... THEN, LET, PRINT, GOTO
and END. BASIC keywords may be entered in lower case or upper case
letters. They are converted to upper case letters when listing the prog-
ram (see Chapter 2). Besides keywords, other reserved words are BASIC
command names (e.g. RUN, LIST etc..) and function names (e.g. SIN, COS,
etc.). See Appendices C,D, and E for a complete list.

b

WHAT IS BASIC?

CONSTANTS
Specific numbers (such as @, 158, - 31.7) are called "numeric constants'
and specific strings (such as 'Length", "Width", "Area =", " L=" and

" W=") are called '"string constants'. This means that their values remain
the same throughout program execution. For example when the constant 150
1s used in a program, it remains fixed at that value throughout program
execution. Numeric costants may be integer (e.g. 15¢) or non integer
(real) e.g. - 31.7. String constants are always quoted (i.e. included in
a pair of gquotation marks), unless differently specified. Unquoted
strings may be used for instance within DATA statements and answering to
an INPUT or LINE INPUT statement. For further information see Chapter 4.

VARLABLES

A variable is a named data item whose value may change during program
execution. The length of the name of a variable may be maximum of 40
characters. The first character must be a letter. Examples of variables
1n our program are:

L, W , AREA
Like keywords, variable names may be entered either in lower or upper

case letters. They are converted to upper case letters when listing the
program,.

A variable may be a simple variable (e.g. L,W,AREA mentioned above) or a
subscripted variable.

A subscripted variable is an array element, i.e. an element of a
collection of variables under one name. You can distinguish different
elements by the value(s) of one or more subscripts appearing 1in
parentheses after the array name. For example, if A 1is a one dimensional
array, A(@) is the first element, A(1) the second element, and so on.

An array may have any number of dimensions. A one dimensional array might
be thought of as a list of items. A two dimensional array is like a table
of values. In this case the first subscript designates the 'row" in the
array and the second subscript designates the ‘'column', for example
B(1,2) is the element belonging to second row and the third column.

For further information see Chapter 4.

FUNCTIONS

We can classify functions as either built-in or user-defined functions.

We shall speak briefly of built-in functions here, whilst user-defined
functions will be described later (see Chapter 9, where you can also find
detailed information on all BASIC functions).

Built-in functions provide a set of commonly used numeric operations (as
square root, sine and natural logarithm etc...) and string operations (as
extracting group of characters - a substring - from a larger string
etc.). The user can invoke them within any BASIC program, writing the
name of the function (e.g. SIN followed in parentheses by the value(s) of
one or more arguments (e.g. SIN (1.5)).

A function call may be an operand within an expression (e.g. 1 +
2%C0S(.4)) and the arguments may also be expressions (e.g. L0G(45/7)).

For example:
SIN(1.5) is .997495 (SIN returns the sine of the argument)

1 + 2*C0S(.4) is 2.84212 (COS returns the cosine of the argument)

LOG(45/7) 1s 1.86@75 (LOG returns the natural logarithm of the
argument)

SQR(19@) 1s 3.16228 (SQR returns the square root of the argument)

EXPRESSIONS

We can classify expressions as numeric, string, relational or logical.

Let us define briefly what we mean for numeric, string and relational
expressions.

Logical expressions will be defined later (see Chapter 6, where we shall
also describe all the types of expressions in detail).

Numeric Expressions

A numeric expression can be either a numeric constant, a simple numeric
variable, a numeric array element, a numeric function, or a mixture of

them linked by means of special symbols, called numeric operators.

The numeric operators are:

WHAT IS BASIC?

+ addition (e.g. A+B+()

- subtraction (e.g. A-B)

\ integer division (the operands are rounded to the nearest integers
before the division is performed, and the quotient 1s truncated to
an integer, e.g. 25.68\6.99 is 3)

MOD modulus arithmetic (it gives the integer value which 1is the

remainder of an integer division, e.g. 25.68 MOD 6.99 is 5, as 26/7
1s 3 with remainder 5)
multiplication (e.g. A*B)

/ division (e.g. A/B)

- (negation it changes the sign of the operand, e.g. -A is 35 if the
value of A is -35)

A exponentiation (e.g. AAB)

String Expressions

A string expression can be either a string constant, a simple string
variable, a string array element, a string function, or a mixture of them
linked by plus signs (+).

By using the plus sign, strings can be joined - "concatenated' is the
technical term.

For example:
1¢ AS = '"Chicago,"

2¢ BS = "IL.,"
3¢ CS = AS+BS+"USA™

The concatenation in statement 3¢ would result in C$ being assigned the
string:

Chicago, IL.,USA

Relational Expressions

Relational expressions compare either two numeric or two string
expressions by means of a relational operator.

The relational operators are:

= equals
greater than
less than
> greater than or equal to
= or =< less than or equal to
> or >< not equal to

The result of a relational expression expression may pe true or false and
may be used to make a decision regarding program flow. For example we
used a relational expression in the statement:

3¢ IF L<=@ THEN 2¢

1t returns control to statement 2@ if L is negative or zero.

THE USE OF BLANKS

Blank spaces may be inserted in the statements to make them more read-
able. The use of blanks is almost always optional in BASIC with the
following exceptions:

- at least one blank must precede and follow a keyword

- blanks are significant within string constants

- blanks are forbidden within numeric constants (including line numbers),
keywords, variable names, and function names.

For example:

2@ INPUT 'Length'; L

and

2¢ INPUT 'Length'; L
are equivalent, but

2¢ INPUT "L en g t h"; L

is not equivalent, as it contains a longer string constant.

WHAT IS BASIC?

COMMENTS

You may document your program by the REM (Remark) statement. After REM
you may enter any string of printable ASC11 characters. For example:

1@ REM RECTANGLE1

Aﬁother way of documenting your program is the through use of comment
fields (a string of printable ASCI1 characters preceded by an apostrophe
and ended by EFGHD.

For example:
19¢ GOTO 19@ 'Loops for ever

Both REM and comment fields may be inserted anywhere in your program as
they are not executable statements but they appear on the program listing
and increase the readability of your program. For further information see
Chapter 2.

RUNNING OUR PROGRAM

Let us run our sample program. If you have already entered it via
Keyboard (and have not switched the M20 off in the interim) it will be 1in
memory. Enter LB L RS ET N CRHERGE listing will appear on the
screen. At the end of the listing when Ok appears on the screen, enter

(R QUNNRCRE

DISPLAY COMMENTS
LIST M20 begins executing statements
1¢ REM RECTANGLE? sequentially. Because statement
2@ INPUT "Length';L 1¢ is a REM(ark) it 1s not
3¢ 1F L< =@ THEN 20 executed; execution in this case
4@ INPUT "'Width";W starts with statement 2.
5¢ 1F W< =@ THEN 40
6@ LET AREA=L*W When an INPUT statement 1is
7@ PRINT nAreas"';AREA;" L=";L;" W=""3 W encountered (see statements 29
8¢ GOTO 20 and 4¢) program execution 1is
9¢@ END suspended and M20 prompts a
Ok message indicating that you
RUN should enter a value. You could
Length? 3.5 enter for example 3.5 for the
Width? 4.2 length and 4.2 for the width.

Area= 14.7 L= 3.5 MW= 4.2

1-13

Length? -7.3

Length? 7.3

Width? 1.3Q

?Redo from start

Width? 1,32

Area= 9.636 L= 7.3 W= 1.32
Length? AC '

Break in 2@

Ok

Statement 6@ calculates the
value of AREA. Statement 7§
displays the values of AREA, L
and W. Statement 8@ returns
control to statement 24.

If you enter a negative value
(e.g. -7.3), for L, statement 2§
1s executed again, as statement
3@ returns control to statement
2@ if L is negative or zero.

If you enter 2 negative value
for W, statement 4@ is executed
again, as statement 5@ returns
control to statement 4¢, if W is
negative or zero.

If you enter a2 string value for
L or W (e.g. 1.3Q for W) the M20
displays an error message:

?Redo from start

and you must re-enter the value.
This program continues to run
until vyou press to
stop execution. The M20 displays
a break message and enters
Command Mode. To resume execu-

tion, enter L O B N | LER

ey

WHAT IS BASIC?

MODES OF OPERATION

BASIC has three modes of operation.

MODES OF OPERATION

COMMAND EXECUTION lé[ljf\:$

MODE MODE MODE
to type in to execute to edit
programs and) programs and program
immediate immediate lines
lines lines

Figure 1-3 Modes of Operation

COMMAND MODE

Whenever the M20 enters Command Mode, it displays a special prompt:

Ok

In Command Mode, BASIC does not accept your input unti] you complete the
line by pressing HGH.

Program and Immediate Lines

BASIC always ignores leading spaces in a line - it jumps ahead to the
first non-space character. If this character is not a digit, BASIC treats

the line as an immediate line. If it 1s a digit, BASIC treats the line as
a program line (see below).

IF...

you enter 2 program
line, 1.e. a line num-
ber (@ to 65529), one
or more BASIC state-
ments or commands
(separated by colons)

and

you enter an immediate
(direct) line, 1.e.
one or more BASIC
statements or commands
(separated by colons)

and

you enter a sequence
of program lines

Submodes

THEN. ..
the line 1s stored 1n memory, when you press
Il The line is not executed until you enter

(R BUNNNCRE

For example:
18@ PRINT "The LOG of 5 is";L0G(5)

is a program line. When you press BASIC
stores it 1in memory. To execute 1it, press

(R B URNN

the line is executed as soon as you press [0LH.
For example:

PRINT "The LOG of 5 1s';L0G(5)

is an immediate line. When you press BASIC
executes it

the lines are stored in memory to form a BASIC
program.

They are stored 1in line number sequence,
irrespective of the order they were entered.

The program is not executed until you enter

(R BURNNCR

Command Mode includes the following Submodes:

- Immediate (or Direct), when you enter an immediate line

- Program, when you enter a program line.

WHAT IS BASIC?

EXECUTION MODE

The M20 executes both BASIC immediate and program lines in BASIC
Execution Mode and PCOS commands in PCOS Execution Mode. A BASIC program
1s executed in ascending line number sequence, unless a control statement
(GOTO, ON...GOTO, IF...THEN...ELSE, IF...GOTO...cLSE, FOR/NEXT,
WHILE/WEND) dictates otherwise.

LINE EDIT MODE

BASIC includes a Line Editor for correcting program lines. This is useful
for correcting long and complicated lines without having to re-enter them
completely.

IF you wish to edit THEN you must enter... BASIC displays
the current line EDIT J SPACE § . | 11...1

(line-number 11...1)

a specified line EDLT W SPACE fn I n NN n | nA...n

(line-number nn...n)

Note: The current line 1is the last line entered or edited. 1f while
running a program an error 1s encountered the line containing the error
becomes the current line. (See 'Syntax Errors' below).

If M20 enters Edit Mode, you can begin editing on the line (deleting,
inserting, and replacing characters) by use of Edit Mode subcommands (see
Chapter 3).

In Edit Mode BASIC takes your input as soon as you enter a character,

without waiting for you to press [{l. By pressing BASIC exits Edit
Mode.

Syntax Errors

If, during execution of a program line, a syntax error is detected, M20
disolays:

Syntax error in nn...n
Ok
nn...n

and automatically enters the Line Edit Mode.

Here nn...n stands for the line number where the error occurred.

Edit States

Line £dit Mode provides the following states:
- Delete

- - Change

- Insert

To enter these states or to exit from them, you must use the appropriate
Edit Commands (see Chapter 3).

BASIC STATEMENTS AND COMMANDS

1t is sometimes difficult to distinguish a BASIC statement from a BASIC
command, as both may be used in a program or an immediate line, but:

- BASIC statements are generally used in program lines and entered 1in
sequence to form a program (with the exception of PRINT, LPRINT, LET
and SWAP, which are also often used in immediate lines, when using the
M20 as a calculator or for debugging purposes)

- BASIC commands are used to manipulate programs and for utility pur-
poses, such as listing programs or clearing the memory. They are gen-
erally used in immediate lines (with the exception of KILL, LOAD, RUN,
SYSTEM, TROFF, TRON and WIDTH which are also often used in a program).

Later in the manual, when introducing a BASIC statement or command we
will write:

- (IMMEDIATE), if it may be used only in an immediate line
- (PROGRAM), if it may be used only in a program line

- (PROGRAM/IMMEDIATE), if 1t may be used both in a program and an
immediate line.

WHAT IS BASIC?

Instead we shall not write anything after the name of a function, as

functions may be u

CHANGING MODE OR ENVIRONMENT

The operation mode
(PCOS or BASIC) may be changed b

characters, or if certain conditions occur.

sed both in a program and immediate line.

(Command, Edit, or Execution Mode) or environment
y entering certain commands or control

The table below summarizes how you can change mode or environment.

1F M20 1is 1in...

BASI1C
Execution Mode

AND 1F...
you press:

CTRL

when M20 is executing
a BAS1IC program or an
immediate line

you press:

CTRL W RESET

a Syntax error
is detected

the execution of a
BASIC program or
command is completed
OR
an error other than
a syntax error 1is
detected
OR
a STOP (or END)
statement 1is
encountered

THEN. ..

execution 1s interrup-
ted and M20 enters
BAS1C Command Mode

memory 1is cleared and
PCOS is reloaded

M20 enters BASIC Line
Edit Mode at the 1line
that caused the error

M20 enters BASIC Com-
mand Mode

BASIC Command Mode

BASIC Line Edit Mode

you enter an immediate
line

you enter:

SHYRSETHRERM

Note: SYSTEM may also
be used in a BASIC
program

you enter:

you press:

CTRL W RESET

you press:

you press:

K3l (Exit)

you press:

B (Quit Editing)

M20 enters BASIC Execu-
tion Mode, executes the
line and returns to
BASIC Command Mode

M2C enters PCOS. Both
the BASIC 1interpreter
and the user memory are
cleared.

M20 enters BASIC Line
£dit Mode

memory 1s cleared and
PCOS is reloaced

M20 enters BASIC Com-
mand Mode. (The newly
modified line 1is dis-
played). All program
variables are cleared

M20 enters BASIC Com-
mand Mode. The remain-
der of the newly modi-
fied line 1is not dis-
played and all program
variables are cleared

M20 enters BASIC Com-
mand Mode and cancels
all the changes that
were made to the line.
No program variable is
cleared

WHAT IS BASIC?

PCOS

you press:

CTRL W RESET

you enter:

(8§ A CR]

you enter any other
PCOS command

you press:

CTRL B RESET

you enter a file
identifier that has
the BAS extension
(e.g. FILEA.BAS).
OR

you enter the BASIC
command followed by
a file identifier
(e.g. BA FILEB)

memory 1is cleared and
PCOS is reloadeg

BASIC is loaded and M20
enters BASIC Command
Mode

M20 enters PCOS Execu-
tion Mode

memory is cleared and
PCOS is reloaded

M20 enters BASIC Execu-
tion Mode and the spec-
1fied program is exe-
cuted

-~ T e,
. et . PO -n PRV S A

2. ENTERING, LISTING, AND
EXECUTING A PROGRAM

ABOUT THIS CHAPTER

This chapter illustrates notation convention, how to document a program,
and the most useful BASIC commands. These allow you to enter, list, save,
load and execute programs.

CONTENTS

NOTATION CONVENTION 2-1 SAVING A PROGRAM 2-19
DOCUMENTING A PROGRAM 2-2 SAVE (PROGRAM/IMMEDIATE) 2-20
REM/COMMENT F1ELDS (PROGRAM) 2-3 LOADING A PROGRAM 2-24
ENTERING A PROGRAM 2-4 LOAD (PROGRAM/IMMEDIATE) 2-24
AUTO (IMMEDIATE) 2-5 EXECUTING A PROGRAM 2-26
NEW (PROGRAM/IMMEDIATE) 2-7 RUN (PROGRAM/IMMEDIATE) 2-26
LISTING A PROGRAM 2-8

LIST/LLIST (IMMEDIATE) 2-9

PROGRAM AND DATA FILES 2-1

FILE AND VOLUME IDENTIFIERS 2-12

PASSWORDS 2-16
VOLUME PASSWORD 2-17
FILE PASSWORD 2-18

WRITE PROTECTION 2-19

ENTERING., LISTING. AND EXECUTING A PROGRAM

NOTATION CONVENTION

The syntax of BASIC is described by means of syntax diagrams.

A syntax diagram is a flow-chart with one entry and one exit. Each path
tiirough the diagram defines an allowable sequence of symbols. The follow-
ing table summarizes the rules the user must follow to draw a syntax
diagram,

NO. RULE EXAMPLE

1 all items enclosed by a
rounded envelope (ovals or
circles) must be entered
exactly as shown.

[tems enclosed in a rec- —(run e Aﬁd
tangular bcx are names of
parameters used in a denttir ; R

statement, a command, or
a function.

A description of each
parameter is given in the
text following the draw-

ing
2 a fork indicates a choice:
you must select one path.
line
For example after RUN you @ number
may either:
file ‘ >
- enter a line number identifier
OR

- a file identifier

3 a branch without a para-

meter indicates that the
alternative is a bypass) . . l
(used to indicate ,R is o o

optional)

4 a loop indicates a repe-
tition. For example vari-
able may be repeated n
times in a READ statement,
and each variable is sep-
arated from the next one

variable |

by a comma

5 this manual shows BASIC REM
reserved words in upper INPUT
casz letters, even though 1IF...THEN
you may enter them in LET
lower case letters. Some PRINT
examples of reserved words GOTO
are shown on your right. END

They are the keywords of
our sample program
(RECTANGLET)

6 PCOS command names are
mnemonic. For example:

file
identifier

8AS1C - go to BASIC
VCOPY - volume copy

and so on.

They may be entered either
in lower case or in upper
case letters. They are nor-
mally entered in lower ca-
se letters and in their
short form (the first two
letters) as shown in the
syntax diagrams

DOCUMENTING A PROGRAM

Often you may want to insert comments in order to make your program logic
easier to follow. This can be done by using:

ENTERING, LISTING, AND EXECUTING A PROGRAM

- the REM statement, or

- comment fields.

REM/COMMENT F1ELDS (PROGRAM)

The REM (Remark) statement is one way to document your program. You can
write any message you want following the keyword REM.

Another way to document your progrem is to write a comment field, i.e. a
string of characters preceded by an apostrophe (') and ended by .

@ string of
—
characters

Figure 2-1 REM Statement

string of |
characters

Figure 2-2 Comment Field

Examples
IF you enter... THEN. ..

1% REM RECTANGLEN a REM statement titles your prog-
ram. It 1s good programming prac-
tice to title pregrams

1¢@ REM SUBROUTINE1 a REM statement marks the beginning

of a subroutine (see Chapter 14).
1t is good programming practice to
title subroutines.

18 'RECTANGLE? a comment field titles your pro-
gram.

Note: In this case the apostrophe
works 1like REM, as the comment

occuplies a line

15¢ LET A=(A1+A2)/2 'Average KO} a comment field ends a statement

Remarks

A REM statement may not be followed by other statements on the same line.
1t can however be the last statement on a multi statement line.

A comment field may:

- occupy a line (in which case the apostrophe has the same function as
REM)

- end a statement.

Both REM and comment fields can appear anywhere in a program. They are
not executable statements, but they appear in the listing.

ENTERING A PROGRAM

The Ok prompt is on the screen. BASIC is waiting for you to start. You
might start immediately by entering the first statement, beginning by
entering the line number 1§. There is, however, a preliminary step that
can make your task a little easier. You can request the system to number
your lines for you. You do this with the AUTO command, which is described
below.

On the other hand, if you have already entered a program and you want to
enter a new one, you must first enter a NEW command. This causes the
program in memory to be deleted allowing you to enter a new program (see
below). The program in memory is also deleted when LOADing a new program
from disk, or when entering a SYSTEM command (to return to PC0S), or when
turning off the machine.

In these cases it would be wise to save your program first (unless you
already have a copy).

Let us enter our sample program (RECTANGLE1), by pressing the following
keys:

ENTERING, LISTING, AND EXECUTING A PROGRAM

(N QERURSPACE

This will clear the memory.
Then enter:

1¢ REM RECTANGLE1

2@ INPUT ''Length';L

3¢ 1IF L< =@ THEN 20

4¢ INPUT "Width'; W

5¢ 1F W< =@ THEN 40

60 LET AREA = L*W

7¢ PRINT "Area='; AREA; " L=";L;" W=";W
8¢ GOTO 2¢

9¢ END

1t is conventional to use an interval of 10 between each line number.
This allows you to modify a program simply by inserting statements bet-
ween existing lines.

Although program lines can be entered in any order they are ordered in
memory in ascending line number sequence.

For example, we may enter the statement whose line number is 5@, then the
statement whose line number is 1@ etc... and obtain the same listing
(i.e. the same program).

You may enter keywords and variable names 1in upper case or lower case

letters. They will be converted into the corresponding upper case letters
when listing the program.

AUTO (IMMEDIATE)

Starts automatic line numbering.

line B i
AUTO number) interva

Figure 2-3 AUTO Command

e
]
Ui

Where

SYNTAX ELEMENT

line number

interval

Examples

IF you enter...

AUTO

AUTO ., 3¢
AUTO 10¢@

AUTO 154,

AUTO 204@,2¢
AUTO, 3

MEANING

the first line number
generated

the first line number
generated is the num-
ber of the current
line

is the interval bet-
ween line numbers

THEN line numbering begins...

at line 19 (default
value)

at the current line
at line 1¢¢

at line 15¢

at line 2¢¢

at line ¢

DEFAULT VALUES

19 (if the interval is
omitted, otherwise ¢)

1¢

AND line interval 1is...

19 (default value)

30
19 (default value)

the last interval spec-
ified by a preceding
AUTO command or, 1if
none were preceding, 1§
(the default value)

- 2¢

3

ENTERING. LISTING, AND EXECUTING A PROGRAM

An Asterisk after Line Number

IF...

AUTO generates a lirne
“cumber that already
exists

THEN. ..

an asterisk is displayed after the line number
to warn the user that any input will replace an
existing line. However, typing immediately
after the asterisk will save the existing line
and generate the next line number.

Note: This will happen only if you enter AUTO
when a program already exists

To Terminate Line Numbering

IF you press...

CTRL I C |

THEN. ..

M20 terminates automatic line numbering and
Command Mode is entered.

Note: The line in which LI is pressed is
not saved

NEW (PROGRAM/IMMEDIATE)

Deletes the current program and variables allowing you to enter a new

program,

NEW switches off the trace flag in the same way as TROFF (see Chapter 13)
and closes all data files (see Chapter 12).

Figure 2-4 NEW Command

—()—

Examples

IF you enter... TigH. ..
NELS the nroarar currently in memory is celeted
18 REM RECTANGLE1 you enter a new program from keyboard.

23 INPUT '"Length';L

Note: It 1s not necessary to enter NEW before
loading a program from disk, by 1issuing a
LOAD or a RUN command (as they automatically
clear memory)

LISTING A PROGRAM

Once a program 1s in main memory it can be listed. To list your program,
enter either the LIST command (the listing will appear on the screen) or
the LLIST command (the listing will appear on the printer).

You cannot list a protected program (SAVEd with the P option, see below).
The LIST and LLIST commands edit your programs by convercing to upper
case letters any reserved word (keyword, varigble names, and function
names) and to PRINT any question mark (?) used instead of PRINT. Moreover
statements are ordered in ascending line numbe. sequence, even though you
may have entered them in a different order.

To list our sample program on the screen enter [S | 3. You
will see the following.

ENTERING, LISTING. AND EXECUTING A PROGRAM

LIST

19
29
30
49
50
6%
79
8¢
99
Ok

REM RECTANGLE1

INPUT "Length";L
IF L <=@ THEN 29
INPUT "wWidth'";w

IF W<=@¢ THEN 49
LET AREA=L*W

PRINT "Area='';AREA:" L=";L;" W=":w

GOTO 2¢
END

At the end of a listing the M20 enters Command Mode and displays Ok.

LIST lists program lines on the screen,

printer.

LIST/LLIST (IMMEDIATE)

LLIST lists program lines on the

LIST | line
number

Figure 2-5 LIST Command

line
number

line
number

| line
number

Figure 2-6 LLIST Command

Examples

1IF you enter...

LIST

LIST

L1ST

L1ST

LIST

LIST

LIST

K3

150
.
208-

-193¢
199-199
.-5¢0

THEN. ..
the entire program is listed
line 15¢ is listed
the current line is listed

line 2¢@ and all higher-numbered lines are
listed

all lines from the beginning to 10@@ are listed
all lines from 1@@ to 19@ are listed

all lines from the current line to 508 are
listed

ENTERING. LISTING, AND EXECUTING A PROGRAM

Suspending a Listing

F... THEN. ..
you press: listing is suspended, without entering Command
Mode.
CTRL B S |
You may continue the suspended listing by typing
any key
you press: M20 enters Command Mode and abandons the listing

CTRL

the end of the program listing is terminated and Command Mode is en-
is reached tered

PROGRAM AND DATA FILES

A file 1is a sequence of statements (program file) or data (data file)
which may be stored on a disk.

The table below sumarizes the main characteristics of program and data
files.

FILE TYPE MEANING

program files a program file is a sequence of program lines.
They are stored in memory in line number se-
guence, irrespective of the order in which they
were entered. A program file is stored in memory
in a packed binary formai, and saved on a disk-
either in this format or in ASCII format (if vou
use the A option to save it). ASCI1l format files
are sequences of ASCI1 characters; effectively
they contain the source listing of your program.
Wnen loaded into memory (by a LOAD or RUi! com-
wand} they are always converted into packed
binary format

¢=-11

data files a data file is a sequence of numeric and/or
string data, which is stored on a disk.

A data file is created by a BASIC program. First
of all it must be opened by an OPEN statenment
which specifies the access mode, a file number
and the name of the file. The value of the file
number must be in the range 1 to 15.

Each following Input/Output statement in the
program will specify the file by the file
number,

When you have finished with the file, it is good
programming practice to 'close'" it using the
CLOSE statement. In any case all data files will
be closed when an END statement is encountered,

Note: When closing & data file, the program
cannot access it unless a new OPEN statement is
executed. This may specify a new file number and
a@ new access mode. Only the file name must
remain the same

FILE AND VOLUME IDENTIFIERS

A disk may contain one or more program and/or data files. A single file
may not be fragmented over more than one disk.

A group of files stored on the same disk forms a "volume". Each file and
each volume has an identifier. Each file name must be unique on any one
volume. Saving a program file which already exists on a volume causes the
original file to be overwritten.

You may assign an identifier to a file either by an OPEN statement (data
files), or by a SAVE command (program files), or by a FNEW PCOS command.
You may assign an identifier to a volume by a VFORMAT, a VNEW, or a
VRENAME PCOS command.

The system recognizes a volume identifier and can find any of its files
only if the corresponding diskette is mounted in a drive. This restric-
tion will not be applied to the hard disk, as this unit 1is always on
line.

ENTERING. LISTING. AND EXECUTING A PROGRAM

Volume identifier

F ‘l
volume volume
name password

|“ ‘

[—
drive
number

————

T

identifier name password

ne——

—— 9
J : volume l_ file J (:) . file l

Figure 2-7 File and Volume Identifier

Where

SYNTAX ELEMENT

volume name

drive number

MEANING

string of up to 4 printable ASCII characters
(for illegal characters see below).

To select a volume in a PCOS or BASIC command or
In an OPEN statement you must specify a volume
name or a drive number. The volume name (cr the
drive number) may be followed by a volume
password. At the end of a volume identifier 3
colon must be entered. For example:

SAVE "VOL1:FILE1"

Here VOL1 is a volume name, FILE1 is a file name
and VOL1:FILE? is a file identifier. You save
the program file FILE1 on the disk named VoL
(for more details see the SAVE command below)

Note: When specifying a file or volume identi-
fier in a BASIC statement or command you must
either include the identifier in a paif__bf
quotation marks, or write a string variable or a
string expression whose value is the identifier.

When specifying a file or volume by name in a
PCOS command you must not include the identifier
in a pair of quotation marks. For example:

vn VOL1:

Note: 1In BASIC a volume identifier may be
specified only if included in a file identifier.
The only excention is with the FILES command
when you want to list all the files of a volume.
For example:

FILES "'vOL2:"

the drive number may be either @ (indicating the
drive on the right), or 1 (indicating the drive
on the left) or 1¢ (indicating the hard disk
drive). With a hard disk system drive @ is on
the left and drive 1 does not exist. For
example:

ENTERING, LISTING, AND EXECUTING A PROGRAM

file password
OR
volume password

file name

LOAD "1:FILEgg2"

Here 1: indicates tha< file FILE@P2 resides on
the diskette inserted in drive 1. The command
loads the file into memory (for more details see
LOAD command below)

string of up to 14 printable ASCII characters
(for illegal characters see below).

Passwords give the user protection a3t valuyme Ar
file level (see below). They may be entered
after a volume name, a drive number, or a file
name and are preceded by a slash. For example:

RUN "@:RECTANGLE1/R1"

Here you load file RECTANGLE1 which has the
Password R1 and run it, RECTANGLE1 resides on

the diskette inserted in drive @ (for more
details see the RUN command below)

string of up to 14 printable ASCII characters
(for illegal characters see below).

To select a file in g PCOS or BASIC command or
in an OPEN statement you must specify a fjle
name. The file name may be preceded by a volume
ldentifier and followed by an extension and/or
by a (file) password. For example:

SAVE "1:PRIMENUMBERS/PN'"

Here you save the BASIC program PRIMENUMBERS on

the diskette inserted in drive 1 and give it the
password PN,

Note: If you do not specify any volume identi-
fier before the file name,the search is limited
to the last selected drive.

Note: The file name may 1include an extension
HEEE, l.e. a string of Up to 12 printable ASCII
characters, preceded by a period (.). For
1llegal characters see below.

Note: filename.extension cannot exceed 14 char-
acters in total (including only one period).
For example:

LOAD "FILEA.CHAR"

will load FILEA which has the extension CHAR. 1t
resides on the last selected drive.

Note: Some extensions have special meanings: BAS
(BASIC programs); CMD (PCOS transient commands) ;
SAV (PCOS transient commands which become
resident the first time they are executed). For
more details see ''Professional Computer Oper-
ating System (PCOS) User Guide'.

Il1legal Characters

comma (,) pound (#) slash (/) backslash (\)
plus (+) ampersand (%) colon (:) single quote (')
asterisk (%) greater than (>) dollar ($) question mark (?)
quote (') equals (=) at sign (@) exclamation (!)
hyphen (-) semicolon (;) space

or any control character

PASSWORDS
Passwords give the user protection at volume or file-level as desired.

If a password has been assigned to a volume it must be specified to
enable the volume. By convention a volume is said to be enabled either if
1t has no password or if the password has been specified in a BASIC or
PCOS command.

The user must enter the corresponding password correctly on all occasions
when using volume and file identifiers.

Note: If you have forgotten a password for a file or volume you will not
be allowed access to that file or volume by BASIC or PCOS.

ENTERING. LISTING, AND EXECUTING A PROGRAM

VOLUME PASSWORD

IF you want to. ..

assign a password to
a volume

access a volume that
has a password (or a3
file saved on a volume
that has a password)

remove a volume
password

hide a volume
password

THEN. ..

Issue a VPASS command, specifying the password.
For exampie:

vp MYVOL:,MYPASS

the volume already has 3 Password this must be
specified by the VPASS command, which, in this
case, will change the Password. For example:

VP VOL1/0LDPASS: NEWPASS [CR |

enable that volume specifying the volunie passs-
word after the volume name or the drive number,
in a BASIC or PCOS command or in an 2JPEN
statement,

the diskette was inserted. For the hard disk,
once the password has been specified, it need
not be specified again until PCOS 1s rebooted,

i1ssue a VDEPASS command.

Note: You must know the Password to use g
VDEPASS command

press NALTW NN.

and the display of entered characters isg
suppressed, (Hide State).

To return to normal Display State you must press

KN NN 29ain, o g

2-17

FILE PASSWORD

1IF you want to...

assign a password to
a file

assing a password
to a program file
(that has none)

access a file that
has a password

remove a file
password

hide a file
password

THEN. ..

issue an FPASS command, specifying the password
1F

the file already has a password, this must be

specified by the FPASS command which, in this

case, will change the password

and FPASS can be issued, or else the password
can be specified in a SAVE command. For example:

SAVE “'FILEABC/PASSABC"

specify that password after the filename. For
example:

LOAD "FILEZ1/PASSZ1"

1f the volume also has a password, you must
specify it too (unless the volume has already
been enabled)

issue a FDEPASS ccmmand.

Note: You need to know the file password to
remove or change it

press [RLEW K.

The cursor will change its shape and blink rate
and the display of entered characters is
suppressed, (Hide State).

To return to normal Display State you must press

CTRL again, or

ENTERING, LISTING, AND EXECUTING A PROGRAM

WRITE PROTECTION

Write protection can be applied by the user at volume or file level.

1IF you want to... THEN. ..
write protect a cover the write protect notch with an aluminized
volume (i.e. to pre- &abel o) . 3 ‘ _
vent any writing hon:.l'hk.sbno;'po§51bxe .21 write protect the

. ard ais ut 1t 1s possible to write protect
e o) '

to that diskette) its files
unprotect a volume remove the aluminized label
write protect a file issue a FWPROT command, specifying the file

identifier

unprotect a file issue a FUNPROT command, specifying the file
identifier

SAVING A PROGRAM

A program is kept in memory only as long as the M20 1is switched on. As
soon as you turn off the machine, your program 1s lost. 1f you want to
retain your newly written program for future use, then you must issue a
SAVE command to store it on a disk.

You can save the current program on other occasions too. The table below
summarizes them. 1ln any case the disk must be enahled otherwise you must

specify the volume password in the SAVE command. Moreover, if you want to
save the program on a diskette, this must not be write protected.

1F you want to... THEN. ..

turn off the machine save the current program (unless you already
have a copy)

enter another program save the current program (unless you already
from keyboard have a copy)

2-19

load another program
from disk (by entering
a LOAD or RUN command)

go to PCOS (by
entering a SYSTEM
command)

replace the old
version of your
program

save the current
program in ASCII
format

protect the current
program against any
attempt to list,
edit, or save it
again

save the current program (unless you already
have & copy)

save the current program (unless you already
have a copy)

save the current program, specifying the same
name 3as the old version

AND
the same password if the old version already has
a password

specify the A option in the SAVE command

specify the P option in the SAVE command

Note: During a saving operation the disk-unit red light comes on. When it
goes off, your program has boen saved, and Ok appears on the screen.

SAVE (PROGRAM/IMMEDIATE)

Saves the current program un a disk, gives it a name, and optionally a

password.

N PO ﬁ
®

Figure 2-8 SAVE Command

ENTERING. LISTING. AND EXECUTING A PROGRAM

Where

SYNTAX ELEMENT

file identifier

Examples

In each of the following
write protected.

IF you enter...

SAVE "RECTANGLE1"

SAVE "@:RECTANGLE1"

MEANING

may be either a string constant or a string
variable. Snecifies the name of the program to
be saved. The file identifier may include a file
password and a volume identifier

specifies that the program must be saved in
ASCII fcrmat

specifies that the program must be saved pro-
tected against any attempt to list, edit, or
save it again

cases the volume must be enabled and must not be

THEN. ..

RECTANGLE1 1is saved on the disk
inserted in the last selected drive.

RECTANGLE1 has no password

RECTANGLET is saved on the diskette insert-
ed 1n drive {.

RECTANGLE1 has no password

SAVE "1@:RECTANGLET" RECTANGLET 1s saved on the hard disk.

RECTANGLET has no password

SAVE "VOL?1:RECTANGLET" &l RECTANGLE1 is saved on YOL1, which may be

inserted in either of the two drives (as
the volume name 1s specified).

RECTANGLE? has no password

2.71

SAVE "VOL1:R1/PASS"

Replacing a File

R1 is saved on VOL1,

in either of
a password

which may be inserted

the two drives and assigns it

In each case the volume must be enabled and must not be write protected.

IF you enter...

SAVE "FILE1"

SAVE "F1LE1/PASS1"

Option A

AND 1IF...

FILE1 already exists
on the selected disk,
AND

has no password

FILET already exists

on the selected disk,
AND

has the password

PASST

FILET already exists

on the selected disk,
AND

has a different pass-

word

FILEY already exists

on the selected disk,
AND

has no password

THEN. ..
the current program
will replace the old
version with the same
name

the current program
will replace the old
version with the same

name and the same pass-
word

no replacement takes
place, and the system
displays an error mes-
sage (see Appendix ().

the current program
will replace the old
version with the same
name and the new ver-
sion will have the
password PASS1

If you specify the A option, the file is saved in ASCII format.

If you do not specify the A option (i.e. either no option or the P option
is selected), the file is saved in a packed binary format.

ENTERING, LISTING, AND EXECUTING A PROGRAM

ASCI1 format takes more space on the disk than the packed binary format,
but some commands require that files be in ASCII format. For instance the
MERGE command requires an ASCII format file.

If you want to save a file using the A" option, the maximum number of
characters in a (logical) line is 255.

After BASIC executes a SAVE command with the "A" option in a program, it
terminates.
IF you enter... THEN. ..
SAVE "GEOMETRY",A M GEOMETRY is saved in ASCII format (i.e. a se-
quence of ASCIT characters) on the disk inserted

in the last selected drive.

GEOMETRY has no password. The disk is presumed
to be enabled.

Option P

If you specify the P option the file is not only saved in packed binary
format, but it is also protected against any attempt to:

- list
- edit
- save it again.

Note: P protection cannot be removed.

IF you enter... THEN. ..

SAVE "@:GEODESY",P Wl GEODESY 1is saved protected on the enabled
diskette inserted in drive §.

GEODESY has no password

2.0

LOADING A PROGRAM

If the program you want to enter into memory resides on a disk, you must
issue a LOAD command.

LOAD deletes all variables and program lines currently residing in mem-
ory, thus before entering a LOAD command you should save the current

program if you want to use it again. You do not have to save the current
program if you already have a copy of it on disk.

To LOAD a program file from a disk, it must be enabled or you must
specify the volume password in the LOAC command. To LOAD a program file
which has a password, you must specify this file password in the LOQAD
command.

If you specify the R option all open data files are kept open, and the

program is RUN after it is LOADed.

LOAD (PROGRAM/IMMEDIATE)

Loads a program file and optionally runs it.

ifciJI:ntifier

Figure 2-9 LOAD Command

Where
SYNTAX ELEMENT MEANING
file identifier may be either a string constant or a string
variable which specifies the program file to be
loaded into memory from disk
R specifies that all open data files are kept open

and the program 1s RUN after it is LOADed

-/

ENTERING. LISTING. AND EXECUTING A PROGRAM

Examples

IF you enter...

LOAD "1@:RECTANGLE1"

LOAD "VOL1:RECTANGLE1/P1"

LOAD "V3/P3:FAA"

LOAD BS

Option R

THEN. ..

RECTANGLE1 1is loaded from the hard
disk.

RECTANGLE1 has no password and its
volume has already been enabled

RECTANGLE? 1s loaded from the
volume VOL1 which may reside in
either of the two drives.

RECTANGLE1 has the password P1 and
VOL1 is presumed to be enabled

FAA 1s loaded from the volume V3
which has the password P3. The
volume V3 may be inserted in either
of the two drives. Its password is
indicated in the LOAD command to
enable the volume.

FAA has no password

the program specified by the con-
tents of the variable BS$ is loaded
into memory

If you specify the R option, all open data files are kept open and the

program is RUN after it is LOADed.

If you do not specify the R option, LOAD closes all open data files.

Note that:

LOAD file identifier,R
and

RUN file identifier,R

have the same effect.

IF you enter... THEN. ..

LOAD ""ACCOUNT",R program ACCOUNT 1is RUN after it is LOADed, and
all open data files are kept open. ACCOUNT
resides on the disk 1inserted in the last
selected drive.

ACCOUNT has no password and its volume has
already been enabled

EXECUTING A PROGRAM

Once a program is in main memory, 1t can be executed (or "run', as this
is frequently called). To tell the M20 to execute a program, you issue a
RUN command (or a LOAD with the option R).

The RUN command runs the current program 1i.e. the program currently in
memory; or loads a program from a disk and runs it. When the RUN command
specifies a file identifier, this must include:

- the file password, if the file has a password

- the volume password, if the volume has a password (and it has not yet
been enabled).

If you specify the R option all open data files are kept open.

Before entering a RUN file identifier (or RUN file identifier,R), save
your current program (unless you already have a copy).

BASIC statements are executed in line number sequence, unless a control
statement (GOTO, ON...GOTO, IF...GOTO...ELSE, 1IF...THEN.. ELSE, FOR/NEXT,
WHILE/WEND) or a subroutine call statement (GOSUB, ON...GOSUB) dictates
otherwise.

RUN (PROGRAM/IMMEDIATE)

Runs the program currently in memory or loads a program from disk and
runs it.

ENTERING, LISTING. AND EXECUTING A PROGRAM

Figure 2-10 RUN Command

Where

SYNTAX ELEMENT

line number

file identifier

E line 1 —

number

o [C
identifier

MEANING

specifies the entry point of the program, 1.e.
the current program 1is run starting from the
specified line number. 1f you do not specify a
line number the current program 1s run from the
beginning.

Note: RUN line number and GOTO line number have
the same effect, except that RUN also clears
program variables

may be either a string constant or a string
variable which specifies the program file to be
loaded from disk into memory and run

specifies that all open data files are kept

open. If R is omitted all data files are auto-
matically closed

=27

Ny

Examples

In the following cases the volume is presumed to be enabled.

1IF you enter...

RUN
RUN 158

RUN "1:Newfile"

RUN '"NewVOL :Newfile"

RUN "1:Newfile/NewPASS"

RUN AS

Option R

THEN. ..
the current program 1is run

the current program 1is run starting
from line 158

program Newfile 1is 1loaded 1into
memory and run. It resides on the
diskette inserted in drive 1, and
has no password

program Newfile 1is loaded 1nto
memory and run. It resides on the
disk named NewVOL which may be
inserted in either of the two
drives. Newfile has no password

program Newfile 1s loaded 1nto
memory and run. It resides on the
diskette inserted in drive 1 and
has the password NewPASS

the program specified by the con-
tents of the variable A$ 1is loaded
into memory and run

1f you specify the R option, all open data files are kept open.

If you do not specify the R option, RUN closes all open data files.

Note that:

RUN file identifier,R
and

LOAD file identifier,R

have the same effect.

ENTERING. LISTING, AND EXECUTING A PROGRAM

1IF you enter...

RUN "1@:Newfile",R

THEN. ..

program Newfile is loaded into memory and run,
leaving the opened files open. Newfile resides
on the hard disk.

Newfile has no password and the hard disk 1s
presumed to be enabled

Suspending Program Execution

IF...
you press:
OR

a STOP statement is
encountered

an error 1s detected
(except Syntax
errors)

a Syntax error 1s
detected

THEN. ..

a program interrupt occurs, the message ''Break
in line nnnnn" 1is issued and Command Mode is
entered.

No open file is closed. You can display program
variables (by an immediate PRINT) or change
their values (by an immediate LET).

You can resume execution by entering a CONT
command (unless you modify some statements).

a program interrupt occurs, the error message 1s
issued and Command Mode is entered.

You cannot resume execution.

No open file is closed; you can display program
variables (by an immediate PRINT)

a program interrupt occurs, the "Syntax error'
message 1s issued, and Edit Mode is entered at
the line that caused the error.

You can modify the line, but you cannot display

program variables (unless you enter Command Mode
by pressing IFl) . You cannot resume execution.

2-29

an END statement
is encountered

Suspending Screen Output

IF...

you press

CTRL

a program interrupt occurs and Command Mode is
entered. All open files are closed. You can

display program variables (by an immediate
PRINT)

You can resume execution by entering a CONT
command

THEN. ..

screen output 1s suspended, but no program
interrupt occurs.

No open file 1is closed. You cannot display
program variables

You can resume screen output by pressing any
key.

3. UPDATING AND MODIFYING A PROGRAM

ABOUT THIS CHAPTER

Even an experienced programmer often needs to make changes and correc-
tions to a program.

Your program can be updated in several ways e.g., deleting lines,
replacing lines, inserting lines, renumbering lines, editing lines using
the Line Editor.

This chapter describes these functions, making use of the sample program
RECTANGLE1. Moreover it will explain how to rename a file, how to delete
it from a disk, how to MERGE two programs and how to list the names of
files residing on a specified disk.

Note that any modifications to the resident program will close data files
and clear program variables.

CONTENTS
DELETING LINES 3-1 NAME (PROGRAM/IMMEDIATE) 3-13
DELETE (IMMEDIATE) 3-2 DELETING A FILE 3-14
REPLACING LINES 3-3 KILL (PROGRAM/IMMEDIATE) 3-14
INSERTING LINES 3-4 MERGING PROGRAMS 3-15
RENUMBERING LINES 3-4 MERGE (PROGRAM/IMMEDIATE) 3-15
RENUMBERING AND CROSS- 3-5 LISTING THE NAMES OF SAVED 3-16
REFERENCES FILES

RENUM (IMMEDIATE) 3-6 FILES (PROGRAM/IMMEDIATE) 3-17
CHANGING LINES WITH THE 3-7

LINE EDITOR
EDIT (IMMEDIATE) 3-7
LINE EDIT MODE COMMANDS 3-8

EXAMINING CURRENT VARIABLE 3-12
VALUES

RENAMING A FILE 3-12

UPDATING AND MODIFYING A PROGRAM

DELETING LINES

We will use the program called RECTANGLE1 from chapter 2 as an example
for demonstration purposes.

First of all, once the program RECTANGLE1 is in memory, issue a LIST com-
mand.

DISPLAY COMMENTS
LIST RECTANGLET wuses two separate
1@ REM RECTANGLE1 INPUT statements for L and W.
2@ INPUT "Length';L Let us modify the program to use
30 1IF L<= @ THEN 29 only one statement. First delete
49 INPUT "Width'';W line 4¢

50 1IF W<= @ THEN 49

6@ LET AREA=L*W

78 PRINT "Area='";AREA;" L=";L;" W=":W
8¢ GOTO 2¢

9@ END

Ok

If you want to delete line 4@, enter:

(D RENLEENTRENSPACERNAN PN CR]

or

(4§ ¢ CR

To see the result of this, issue another LIST command.

DISPLAY COMMENTS

LIST As it stands now, RECTANGLE1
1@ REM RECTANGLE" will not execute. You must now
20 INPUT 'Length";L correct line 2@ (which asks for
30 IF L<= @ THEN 2¢ only one input value) and line
50 IF W<= @ THEN 4¢ 58 (which refers to a line no
6@ LET AREA=L*W longer in the program). We
7@ PRINT "Area='";AREA;" L=";L;" W="";W shall correct our program in
8¢ GOTO 2¢ the following pages

99 END
Ok

DELETE (IMMEDIATE)

Deletes program lines. The M20 enters Command Mode after a DELETE has
been executed.

| line |
DELETE ° o e _r.

ling A
number
——ef ln':::m)or J
Figure 3-1 DELETE Command
Examples
IF you enter... THEN. ..
DELETE . the current line is deleted
5¢@ line 58@ is deleted
OR
DELETE s5¢¢
DELETE 19¢-2¢¢ ECH all lines between 10@ and 2¢¢ inclusive are
deleted
DELETE -4¢¢ all lines from the beginning of the program up

to and including line 4@@ are deleted

Note: If any line number specified in a DELETE command is not present in
the program, "lllegal function call" will be issued by BASIC.

UPDATING AND MODIFYING A PROGRAM

REPLACING LINES

To change a line you can:

- replace the entire line by entering the number of that line and its new
contents

- edit the line using Edit Mode.

First let us use the former method and replace the two mentioned lines of
RECTANGLET by entering:

2@ INPUT "Length and Width";L,W
50 1F W<=@ THEN 2¢

and obtain another listing:

DISPLAY COMMENTS
LIST This version of RECTANGLE? will
18 REM RECTANGLE1 execute correctly. However to
2@ INPUT '"Length and Width";L,W terminate execution you still
30 IF L<= @ THEN 2¢ have to press R

5¢ IF W<= @ THEN 2¢

6@ LET AREA=L*W

70 PRINT "Area='"';AREA;" L="";0L;" W="";W
80 GOTO 29

99 END

Ok

[t is clumsy to have to press to terminate execution. We
shall, therefore, make some additional modifications.

We can replace statement 8§ with the following two statements:

1) INPUT "Again:YES=Y,NO=N'';X$

2) IF XS="Y" THEN 2¢

To replace the GOTO statement at line 8@, enter:

8@ INPUT "Again:YES=Y,NO=N";X$

Note: X$ is a string variable.

INSERTING LINES

Now we must insert statement 2) between line 8@ and 9¢. We may choose 85
as the line number, entering:

85 IF X$="Y" THEN 20

Let us issue another LIST command, and obtain:

DISPLAY COMMENTS
LIST This version of RECTANGLE1 does
1@ REM RECTANGLE? not require that you press
2@ INPUT 'Length and Width'";L,W to stop it.
3@ 1IF L< =@ THEN 20 However, the current line num-
58 1IF W<=@ THEN 20 bering is no longer in regular
6@ LET AREA = L*W increments of 1@

7 PRINT “Area=";AREA;" L=";L;" W=";W
8¢ INPUT '"Again:YES=Y,NO=N'";X$

85 1F X$="Y'" THEN 2¢

9@ END

0k

When you run the program this is what happens. After calculating the area
of the rectangle whose length and width are entered as input, the program
asks if you want to run it again. If you do, you enter Y. When statement
+ 85 1s encountered, the program will loop back to statement 2@ and cycle
through the statements again. If you do not want another calculation, you
enter N. The condition tested at statement 85 will not be satisfied and
the program will continue to the END statement.

RENUMBERING LINES

As we have seen, the current line numbering of RECTANGLE1 is no longer in
increments of 1@. This is no great drawback for a simple program, but for
a complex program for which changes may still be planned, haphazard line
numbering can cause problems.

The RENUM command allows you to renumber the lines of a program, starting

for example at 1@ and incrementing each additional line by 1@. Simply
enter:

- - MACTA O AMALIACE MEEEMAELUAE ALY .-

-

UPDATING AND MODIFYING A PROGRAM

(REENNQURNMECR

To see the result, you can issue another LIST command.

LIST

1¢ REM RECTANGLE1l

2¢ INPUT "Length and Width'"; L,w
3¢ IF L<= ¢ THEN 2¢

48 IF W<= @ THEN 29

S@ LET AREA=L*W

6@ PRINT "Area=";AREA;" L=";L;" W=";W
7@ INPUT "Again:YES=Y,NO=N";X$
8¢ IF X3$="Y'" THEN 20

9@ END

Ok

RENUMBERING AND CROSS-REFERENCES

When a program is resequenced by a RENUM command, all cross-references
within the program are updated where necessary. For example, if a program
contains the statement GOTO 14¢ and line 14¢ is subsequently renumbered,
the reference in the GOTO will be automatically updated to reflect the
change.

General Rule

RENUM changes all line number references following GOTO, GOSUB, THEN,
ELSE, ON...GOTO, ON...GOSUB and ERL to reflect the new line numbers,

If nonexistent lines are referenced in the program, RENUM causes the
following message:

Undefined line xxxxx in yyyyy

The program will be renumbered correctly and the references to
nonexistent lines remain unchanged.

RENUM (1IMMEDIATE)

Changes the line numbers of the current progran.

| new line | old line | . l l .
RENUM number) number (:) interval

Figure 3-2 RENUM Command

Where
SYNTAX ELEMENT MEANING DEFAULT VALUES

new line number the first new line 19

number
~old line number the first old line the first line number
number of the program

interval the new interval be- 19
tween line numbers

Examples

IF you enter... THEN...

RENUM the entire program is renumbered. The first new
line (new line number) is 1@ and a line interval
of 1@ is assumed (default value)

RENUM 100 the entire program is renumbered. The first new
line is 19@ and a line interval of 1@ (default
value) 1s assumed

RENUM 154, ,2¢0 KCH the entire program is renumbered. The first new
line 1is 158 and a line interval of 2¢ is
specified

UPDATING AND MODIFYING A PROGRAM

CHANGING LINES WITH THE LINE EDITOR

In Edit Mode it is possible to change portions of a line without re-
typing the entire line.

M20 enters Edit Mode if:
- You enter an EDIT command
- @ syntax error is detected.

Upon entering Edit Mode, M20 displays the number of the line to be ed-
ited, then a space and walts for an Edit Mode command.

The Edit Mode commands do not appear on the screen when you enter them.

In Edit Mode, M20 takes characters as soon as they are entered in - you
do not need to press EGH.

EDIT (IMMEDIATE)

The EDIT command enters Edit Mode at the specified line.

line
EDIT | number
Figure 3-3 EDIT Command
Examples
IF you enter... THEN M20 displays...
EDIT . K&l nn...n (entering Edit Mode at the current line).

Here nn...n means the current line number

EDIT 3¢¢ NGl 30¢ (entering Edit Mode at the specified line)

LINE EDIT MODE COMMANDS

The table below summarizes Line Edit Mode commands. They are also grouped
in classes.

CLASS COMMAND MEANING
to start editing a (List) causes the current
line state of the line to be

displayed. The current
line number is display-
ed again at the begin-
ning of a new line

¥ (Cancel and Start restores the original

Again) line without displaying
it. The current line
number is displayed
again at the beginning
of a new line

to move the cursor SPACE displays the next char-
acter and moves the
cursor one position to

the right
CTRL B H | erases the last char-
(Backspace) acter appearing on the

line and moves the
cursor one position to
the left

to insert characters (Insert) enters Insert State at
the current cursor po-

sition. You may insert
a string of characters.
The inserted characters
are displayed. To exit
Insert State, press

CTRL J| HOME

El (Extended Line) causes the remainder of
the line to be display-
ed, moves the cursor to
end of line and enters
Insert State

UPDATING AND MODIFYING A PROGRAM

to delete characters

to search characters

CTRL J§ HOME

IR (Delete one
character)

Il KN (Delete n

characters)

IEB (Hack)

ER (Search for

the 1st occurrence
of x)

exits Insert State but
remains 1in Edit Mode.
If you press you
exit both Insert State
and Edit Mode

deletes the next char-
acter which is dis-
played between back-
slashes (\) and the
cursor 1s positioned to
the right

deletes the next n
characters. Deleted
characters are dis-
played between back-
slashes (\) and the
cursor 1is positioned to
the right of the last
character deleted. If
there are fewer than n
characters to the right
of the cursor, [N IEB
deletes the remainder
of the line

deletes the remainder
of the line and enters
Insert State

searches for the first
occurrence of 'x" in
the line (where "x'" 1is
any printable ASCII
character) and posi-
tions the cursor before
it. The character at
the current cursor pos-
ition 1is not included
in the search. If the
character is not found
in the line, the cursor
will stop at the end of

to replace characters

to exit Edit Mode

KN B E8 (Search

for the nth occur-
rence of x)

K3 EN (Delete until

the 1st occurrence
of x)

(n FKE x FOBRRT

until the nth occur-
rence of x)

EB (Change one

character)

Cn
Xl (Change n char-
acters)

W (Exit)

the line. All char-
acters passed over dur-
ing the search are
displayed

is similar to [x |
except that it searches
for the nth occurrence

is similar to 5N IEER
except that all the
characters passed over
in the search are de-
leted. The cursor is
positioned before ''x"
and the deleted char-
acters are enclosed in
backslashes (\)

1s similar to I EEE

except that it searches
for the nth occurrence

changes the next char-

tr

acter to ''x

changes the next n
characters to the spec-
ified string (keyed
after H[l). When you
have keyed a string of
n characters, Change
State is exited and you
will return to Edit

~Mode

causes BASIC to display
the new modified line
and to return to Com-
mand Mode

has the same effect as
HM, but the remainder
of the 1line 1is not
displayed

UPDATING AND MODIFYING A PROGRAM

KN (Quit) returns to Command Mode
and cancels all the
changes that were made
to the line in the
current editing session

Examples

The following table give you some examples for the use of Edit Mode
commands.

Note that the cursor is displayed as shown here below (=) when the M20 is
In Edit Mode.

STEP If you enter... THEN M20 displays...

1 E MO N1 BT PR SPACE 500

2 5¢@ FOR 1=1 TO 15 STEP 2
Sed

3 (6 times) 5@@ FOR 1= _

4 5¢@ FOR 1=2_

5 LW (5 times) 50@ FOR 1=2 TO 1_

6 [6 | 580 FOR 1=2 T0 16_

7 50¢ FOR 1=2 TO 16 STEP 2

1 (E WO NTNT N SPACE 519

[5 | [0 |

2 519 LET A(1)=1*SIN(X)
519

3 I (11 times) 510 LET A(1)=1*_

4 (0 | 519 LET A(1)=1*C0S_

5 X B NPERETENET 510 LET A(1)=1*C0OS(X):PRINT A1)
SPACE W A Il (]) |

—

‘e JO R LN T JSPAcE N I CRBECIE

2 3 I 519 \LET _

3 (11 times) 519 \LET \ A(1)=1%COS(_

4 | HOME | 51¢ \LET \ A(1)=1*COS(Y+_

5 (9 times) 519 \L_ET- \ A(1)=1#%COS(Y+X) :PRINT _

6 aRCRLIN, NxB; RCR 5§1¢ \LET \ A(1)=I1#*COS(Y+X):
PRINT 1,X; _

l'

7 SPACE N . 519 A(1)=1*COS(Y+X):PRINT 1,X;

EXAMINING CURRENT VARIABLE VALUES

EDI1Ting a program line automatically clears all variable values and
closes open data files. 1f BAS1C encounters a syntax error during program
execution, it will automatically put you in the Edit Mode. Before editing
the line, you may want to examine current variable values. In this case,
you must press ICl as your first Edit Mode command. This will return you
to the Command Mode, where you may examine variable values. Any other
Edit Mode command (pressing [E I etc) will clear out all variables.

RENAMING A FILE

You may change the name of a program or data file residing on a disk with
the NAME command, provided there is no write protection. The old filename
must exist and the new filename must not exist on the selected volume.
After a NAME command 1is executed, the file exists on the same disk, in
the same area of disk space, with the new name. File and volume passwords
(if any) are not changed. You must specify the file password and the
volume must be enabled (or you must specify the volume password).

UPDATING AND MODIFYING A PROGRAM

Changes the name of a disk file.

—(ame }—{ fsenie
identifier

Figure 3-4 NAME Command

Where

SYNTAX ELEMENT

file identifier

NAME (PROGRAM/IMMEDIATE)

file
name

MEANING

is either a string constant or a string variable

which specifies the program or data file whose
name is to be changed

file name

is either a string constant or a string variable

which specifies the new name of the file

Examples

Neither

presumed to be enabled.
1F you enter...

NAME "1:FR1" AS "FR2"

NAME "VOL1:ACC/PACC' AS "ACC1"

the volume nor the file has write

FR1 is changed into FRZ.

protection. The volume 1s

THEN. ..

1t resides
on the diskette inserted in drive
1. FR1 has no password

ACC is changed into ACCI. 1t re-
sides on the disk VOL1 which may be
inserted 1in either of the two
drives. The file password remaing
PACC

3-13

DELETING A FILE

Program or data files stored on a disk can easily be deleted by use of
the KILL command, provided the disk is not write protected. After a file
has been deleted, its name can be used again in saving a new file.

You must specify the file password (if any) and the volume must be en-
abled (or you must specify the volume password).

KILL (PROGRAM/IMMED1ATE)

Deletes a program or a data file stored on a disk.

KILL file ~— L—s
identifier

Figure 3-5 XILL Command

Where

File identifier is either a string constant or a string variable which
specifies the file to be deleted

Examples

The volume is not write protected and is enabled.

1F you enter... THEN. ..

KILL "Business.B" file Business.B is deleted. The search is
limited to the last selected drive.
The file has no password

KILL "1:Business.B" file Business.B is deleted. The search is
limited to the diskette inserted in drive 1.
The file has no password

UPDATING AND MODIFYING A PROGRAM

KILL "NUMbers/PNUMZ1" i file NUMbers with the password PNUM@1 is de-
leted. The search is limited to the last
selected drive.

MERGING PROGRAMS

The MERGE command allows you to include a specified program file saved
(in ASCI1 format) on a disk, with the program in memory. MERGE is similar
to LOAD, except that the program in memory is not erased before the disk
program is loaded. Instead, the disk program is merged into the resident
program. That 1is, program lines in the disk program will simply be
inserted into the resident program in sequential order. If a line of the
disk program and a line of the resident program have the same line
number, the line of the disk program replaces that in memory. The MERGE
command must specify the file password (if the disk program has a
password) and the volume must be enabled (or you must specify the volume
password).

Merging programs may, for instance, be useful to add (standard) sub-
routines to a program.

It is good programming practice to merge subroutines with line
numbers greater than the highest line number of the program. This will
improve the MERGE operation speed and allow room to extend the main
program,

MERGE (PROGRAM/IMMEDIATE)

Merges the current program with a specified program file (which must have
been saved in ASCII format).

 file
_’(MERGE)] identifier

Figure 3-6 MERGE Command

Where

Y

“~

The file identifier is either a string constant or a string variable
which specifies an ASCI1l format program file, i.e. a program saved with

the A option.

Examples

DISPLAY

MERGE "1:Fnew/FnewPASS"

MERGE ''V@@1/VP@dl .Fagl/Pagl"

Remark

COMMENTS

the program Fnew with the password
FnewPASS is merged with the program
in memory

Note: The volume resides on drive 1
and is already enabled

the program F@@1 with the password
P@F1 is merged with the program in
memory.

Note: The volume V@@1 is enabled by
the use of the password VP@@1 in
the MERGE command

MERGE closes any open data file and clears variables.

LISTING THE NAMES OF SAVED FILES

1f you do not remember the names of program and/or data files residing on
a disk, you can use the FILES command to get a listing of them.

The FILES command may be used either with a volume or a file identifier.

When the volume identifier is specified, all the files in the volume are
listed (whether they have a password or not).

UPDATING AND MODIFYING A PROGRAM

To execute a FILES command you do not need to know the disk's password,
nor does the disk have to be enabled.

When a file identifier is specified, only this file 1s listed and you
need not specify the file password (if any).

Similarly the same functions may be carried out in PCOS with the VQUICK
command.

Note: The FILES command does not list passwords.
The information displayed includes:

- the drive on which the disk is currently active
- the name of the disk (if any)

- the amount of file space left on the disk in sectors (a sector is 256
bytes).

- the name of each file on the disk or the name of the specified file, or
the name of the selected file(s) if you use the wild card characters
"o ™ within the file identifier clause. ("7

character, "*" match matches any
’ es any name).

FILES (PROGRAH/IHHEDIATE)

Lists files in the directory of the specified disk.

FILES | volume
identifier

file
identifier

Figure 3-7 FiLgs Command

3-17

Where

SYNTAX ELEMENT MEANING
volume identifier is either a string constant or a string variable
which specifies the disk whose directory is to
be listed
file identifier is either a string constant or a string variable
which specifies the file (in disk directory) to
be listed
Examples
1F you enter... THEN. ..
FILES the name of each file on the disk (inserted

in the last selected drive) is displayed

FILES "¢g:" KGB the name of each file on the diskette
inserted in drive @ is displayed

FILES '"1g:." the name of each file on the hard disk 1is
displayed
FILES "‘MyvoL:" HCH the name of each file on the disk MYVOL is

displayed. It may be inserted in either of
the two drives

FILES '"MYVOL/MYPASS:" the name of each file on the disk MYVOL
which has the password MYPASS is displayed.
1t may be inserted in either of the two
drives. The specification of the volume
password does not affect the execution of
this command

FILES "MYF1LE" the name of the file MYFILE (which resides
on the disk inserted in the last selected
drive) is displayed

UPDATING AND MODIFYING A PROGRAM

FILES "1:*.cmd" a list of all the files with the extension
' emd' residing on the diskette inserted 1in
drive 1 is displayed

FILES "@:v?2272" a list of all the files resident on the
diskette inserted in drive @ with a four
letter name beginning with 'v' 1s displayed.

3-19

4. DATA

ABOUT THIS CHAPTER

In this chapter we shall consider how BASIC handles data. We shall look
at constants and variables, number representation, numeric conversions

(PROGRAM/1MMEDIATE)

and arrays.
CONTENTS
CONSTANTS AND VARIABLES 4-1 TYPE DECLARATION TAGS 4-11
CONSTANTS 4-1 NUMERIC CONVERSIONS 4-12
VARIABLES 4-1 SINGLE OR DOUBLE PRECISION 4-12
TO INTEGER
HOW BASIC NAMES VARIABLES 4-1
INTEGER TO SINGLE OR 4-13
REPRESENTATION OF NUMBERS 4-2 DCUBLE PRECISION
BINARY REPRESENTATION 4-2 SINGLE TO DOUBLE PRECISION 4-14
HEXADECIMAL AND OCTAL 4-5 DOUBLE TO SINGLE PRECISION 4-15
REPRESENTATIONS
ILLEGAL CONVERSIONS 4-16
HOW BASIC CLASSIFIES 4-6
CONSTANTS SUBSCRIPTED VARIABLES AND 4-16
ARRAYS
NUMERIC DATA 4-6
ONE DIMENSIONAL ARRAYS 4-17
STRING DATA 4-6
MULTI DIMENSIONAL ARRAYS 4-18
NORMAL TYPING CRITcRIA 4-7
TO CLASSIFY CCNSTANTS DIM (PROGRAM/IMMEDIATE) 4-19
TYPE DECLARATION TAGS 4-8 ERASE (PROGRAM/IMMEDIATE) 4-22
HOW BASIC CLASSIFIES 4-9 OPTION BASE 4-2:
VARIABLES (PROGRAM/IMMEDIATE)
DEFINT/DEFSNG/DEFDBL/DEFSTR 4-10

DATA

CONSTANTS AND VARIABLES

Each data item may appear in a BASIC program as either a constant or a
variable.

CONSTANTS

Specific numbers such as 15, -2, 3.41 or specific strings such as
"AAA.b1", '"Cursor***'" are referred to as constants. This means that their
values remain the same throughout program execution.

VARIABLES

Variables are named data items whose values may change during program
execution.

For example, the formula for computing the area of a circle:
3.141592*RA 2

uses variable R. That is R represents any radius and reserves a location
in memory for the assignment of a radial value.

Note: The symbol A 1s an operator which indicates that R is raised to the
power specified (2 in this case).

HOW BASIC NAMES VARIABLES

The identifier (or name) of a variable may not be longer than 40
characters. The characters allowed in a variable name are letters and
numbers. The period (.) is also allowed. The first character must be a
letter. The last character may be a letter, a number, a period, or a type
declaration tag (%, !, #, $). The meaning of type declaration tags is
illustrated later in this chapter.

Lower case letters in a variable identifier are considered equivalent to
their corresponding upper case letters and are converted to their
corresponding upper case letters when listing the program.

Examples of variable names are:

STUDENT A1 CCP1.CLASS ACCOUNT # AS STRING

Reserved Words
A reserved word (a keyword, a command or a function name), cannot be used
as a variable identifier but BASIC permits embedded reserved words within

a variable identifier. For example:

1@ PERFORMANCE = 1#5.3
2@ SINGLE = 1371.2

are valid program lines, even though PERFORMANCE contains the keyword FOR
and SINGLE begins with the name of the built-in function SIN.

REPRESENTATION OF NUMBERS

Numbers are concepts to humans. Most humans are trained to think in base
19. 1In a computer, numbers are electronic patterns of ones and zeros. The
computer performs many of its operations in base 2 (referred to as
3inary).

This paragraph gives a review of the concepts of base 2 and of
alternative base representation (hexadecimal and octal).

BINARY REPRESENTATION

Before looking at base 2, let us take a look at base 1f. The number two
hundred and five is represented as:

205

Base 1§ uses digits @, 1, 2, ...9.The digits have a place value
corresponding to powers of ten. The representation above really means:

(2 x 18%) + (8 x 10") + (5 x 16

The concept of place value also exists in base 2. The difference being
that powers of two are represented instead of powers of ten. The number
two hundred and five is represented as:

11981181

Base 2 uses only the digits "1'" and '"@". Therefore, the binary represen-
tation shown above means:

DATA

(1 X 27)+(1 X 26)+(¢ X 25)+(¢ X 24)+(1 X 23)+(1 X 22)+(g x 21)+(1 y Zﬂ)
This is the same as:

128 + 64 + 8 + 4 + 1 = 2¢5

A "binary digit" is referred to as a "bit". A bit may be either 1 or §.

Bytes

The grouping of 8 bits together is in such common usage that it has been

given a special name - a byte. The term byte refers to 8 bits processed
as a unit.

The bits of a byte are numbered from ¢ (right most, least significant) to
7 (left most, most significant). By doing this, the bit number and the
power of two it represents are the same. The following table shows the
bit position in a byte and their corresponding values.

BIT POSITION BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT1 B8IT g

Meaning 27 26 25 24 23 22 21 2g
Value 128 64 32 16 8 4 2 1
Table 4-1
BASE 1¢ BASE 2

g g

12 1104

27 116811

149 1961811

255 111111

Table 4-2 Conversion Examples

Words

In the M20 data is handled 16 bits (2 bytes) at a time. This quantity is
called a '"word'". The number of bits in a word is machine dependent. The
bits in a word are numbered from # (right most, least significant) to 15
(left most, most significant).

Another characteristic of a word in the M20 is that two's complement
representation is used. Two's complement representation is a method of
storing either positive or negative numbers in a word. It works like
this:

IF an integer THEN AND the word is...
number is...

positive bit 15 is ¢ a positive number rep-
resented in normal bi-
nary form

negative bit 15 is 1 a negative number rep-

resented in 2's com-
plement form

To find the value of a negative number, you must invert all the bits and
add 1 (this will give you its absolute value).

For example:

LN O A A A O O T I B @ original value (negative)

Inverting all the bits

P ¢ ¢ ¢ ¢ 11 ¢ 081188 11 1 inverted value

Adding 1

@9 8 8 6 1 1 88 11 P 1 @ ¢ @ absolute value
(inverted + 1)

So the value of the given pattern is:

-1648

DATA

HEXADECIMAL AND OCTAL REPRESENTATIONS

We have seen that it is possible to represent numbers in decimal (base
1) and binary (base 2). BASIC allows you to represent numbers in octal
(bise 8) and hexadecimal (base 16) too.

It is often convenient to work with binary numbers but they are tedious
to read and write. For this reason we often convert them to octal or
hexadecimal.

~ base 8, known as '"octal" uses one octal digit for three binary digits

- base 16, known as "hex' (short for hexadecimal), uses one hex digit for
four binary digits,

The following table shows the decimal (base 18), binary (base 2), octal
(base 8) and hex (base 16) representations for the numbers @ to 16.

DECIMAL BINARY OCTAL DECIMAL BINARY HEX
g))) goge g
1 ga1 1 1 gagn 1
2 g1y 2 2 ge1g 2
3 g11 3 3 gg1 3
4 190 4 4 g19¢ 4
5 191 5 5 3191 5
6 19 6 6 g11¢ 6
7 1M1 7 7 g111 7
8 1099 19 8 1809 8
9 1901 1 9 1801 9
19 1819 12 19 1919 A
11 1911 13 11 1911 B
12 1199 14 12 1199 o
13 1181 15 13 1181 D
14 1119 16 14 1114 E
15 1111 17 15 1111 F
16 19098 29 16 10008 19

Table 4-3

HOW BASIC CLASSIFIES CONSTANTS

The way that BASIC stores a data item determines:
- the amount of memory it will consume

- the speed in which BASIC can process it.

NUMERIC DATA

BASIC can to store all numbers in your program as either:

- Integers (Speed and Efficiency, Limited Range), “
- Single precision (General Purpose), or

- Double precision (Maximum Precision, Slowest in Computation).

INTEGERS SINGLE PRECISION DOUBLE PRECISION
Memory 2 4 8
Space
(bytes)
Range of -32768 to 32767 From *1g 38 From *1g ~3°8
values To +1g38 To 11p398
Significant Up to 5 Up to 7 Up to 16
Digits
Displayed Up to 5 Up to 6 Up to 15
Diqgits (with rounding) (with rounding)
(PRINT/LPRINT)
Table 4-4

Note: Non significant zeros will not be displayed. For example the value
3.4790808 in single precision will be displayed as 3.41.

STRING DATA

Strings (sequences of ASCIl characters) are ucerul for storing non
numeric information, such as names, addresses, codes, etc.

DATA

For example, the constant:

“FORD ,RENAULT"

is a quoted string constant of 13 characters. Each character in the
string (including blank) is stored as an ASCI1 code, requiring one byte
of storage. BASIC would store the above string constant internally as:

ASCI1 F 0 R D , R E N A U L T
Character
Hex 46 4F S2 44 28 2C 52 45 4E 41 55 4C 54
Code

Table 4-5

A string can be up to 255 characters long. A string with length zero is
called a "null" string and is represented by a pair of double quotes
("''). BASIC allocates strings dynamically, i.e., the memory space re-
served for a string may vary during program execution from @ to 255 bvtes.

NULL STRING STRING OF n CHAR. STRING OF MAX. LENGTH

Memory space ¢

n 255
(bytes)
Range of _ Any string of printable ASCI1 characters
values inciuding blanks
Table 4-6

NORMAL TYPING CRITERIA TO CLASSIFY CONSTANTS

1F... THEN. .. EXAMPLES
the value is enclosed it is a string ""NO"'
in double gquotes "YES™
"Circle"

"™ (null string)

the value is not in
quotes

a number 1is whole and
in the range -32768
to 32767

the value has the pre-
fix &4 and is composed
of the numerals @-9
and the letters A-F
(in the range J to
FFFF)

the value has the pre-
fix &0 or & and is
composed of the nume r-
als #-7 (in the range
@ to 177777)

a number 1is not an
integer and contains 7
or fewer digits

a number contains more
than 7 digits

TYPE DECLARATION TAGS

i1t 1s a number.

Note: An exception to
this rule is during
data input and in DATA
statements, where un-
quoted strings are al-
lowed

it is an integer
constant

it is a hexadecimal
constant

Note: A hexadecimal
constant may be con-
sidered an alternative
representation of the
corresponding integer
constant

it 1s an octal
constant

Note: An octal constant
may be considered an
alternative representa-
tion of the correspond-
ing integer constant

it 1s single precisicn

it is double precision

You can override BASIC's normal typing criteria
"'tags' to the end of a numeric constant.

521

-15
3.7345E-2
43#

1924
721
~-32758

&H2@F @
&HF1
&H35
&HFE98
&HFFFF
&H@

8079
044
871175

-2.3
32768
45.314

-650089

52174593

-54.397124
8.799999999

by adding the following

DATA

TAG MEANING EXAMPLES
! makes the number 5.7211¢333! the con-
single precision stant 1is classified as

single precision and
shortened to 7 digits
(i.e., 5.7211¢3)

E single precision 7.31E4 means
floating point. The E 7.31x18 " i.e. 731¢¢
indicates the constant
1s to be multiplied by
a specified power of

19
makes the number 4#
double precision 5.21#%
D double precision 7.2D-3 means

floating point. The D 7.2 x 18 i.e.
indicates the constant g.0072

1s to be multiplied by

a specified power of

19

HOW BASIC CLASSIFIES VARIABLES

When BASIC encounters a variable'identifier in a Program, it classifies
it as either a string, integer, single or double precision number.

BASIC classifies all variable names as single precision initially. For
example, if this is the first line of your program:

1% X1 = 3.5

BASIC classifies X1 ds a single precision variable.

DEFINT/DEF SNG/DEFDBL/DEFSTR (PROGRAM/IMMEDIATE)

Four DEFtype statements are provided to assign different types to vari-
ables.

A DEFtype statement declares that the variable names beginning with the
letter(s) specified will be that type variable.

DEFtype statements are usually placed at the beginning of your program,
and must precede the use of the defined variables.

DEFSNG

{ letter i@—» letter

DEFDBL

DEFSTR

000

Figure 4-1 DEFtype Statements

Default Values

Unless otherwise specified all program variables are assumed to be single
precision.

Examples
IF you enter... THEN. ..
1@ DEFINT A-Z all program variables will be integer
10 DEFDBL D all program variables beginning with the letter

D will be double precision

DATA

19 DEFSTR S,U-W all program variables be
5, U, V and W will be st

TYPE DECLARATION TAGS

ginning with the letters
ring variables

As with constants, you can always override the type of a variable name by
adding a type declaration tag at the end. There are four type declaration

tags for variables:

TAG MEANING

o\°

integer

! single precision

double precision

EXAMPLES
A%
STEP%
INCREMENT%
are all integer vari-
ables, regardless of

what attributes have
been assigned to the
letters A, S ang 1

SPEED!

SPACE!

TIME!

are all single preci-
sion variables, regard-
less of what attributes
have been assigned to
the letters S ang T

TOTAL #

SUBTOTAL#

X1#

are all double preci-
sion variables, regard-
less of which attrib-
utes have been assigned
to the letters T, S and
X

$ string AS
B1S
NAME .CLASSS
are all string vari-
ables, regardless of
which attributes have
been assigned to the
letters A, B and N

NUMERIC CONVERSIONS

Often a program or immediate line might ask BASIC to assign one type of
constant to a different type of variable. For example, if you enter:

1%=5.31

SASIC will first round the single precision constant 5.31 to the nearest
Integer to assign it to the integer variable 1%. Thus the value of 1%
will be 5.

You may also want to convert one type of variable to a different type of

variable. such as:

SCALE!=B%
SECONDS!=C1 #
BOX#=W%

The conversion procedures are illustrated in the examples on the
following pages.

SINGLE OR DOUBLE PRECISION TO INTEGER

BASIC converts the original value to an integer by rounding the frac-
tional part.

Note: The rounded value must be greater than or equal to -32768 and less
than 32767, otherwise an Overflow error occurs.

DATA

Examples

DISPLAY COMMENTS

C%=-15.1 -15 1s assigned to C%
Ok

7C%

-15

Ok

%=4.1€2 419 is assigned to C%
Ok

?7C%

419

Ok

(%=47.8 48 is assigned to C%
Ok

?7C%

48

Ok

C%=7.21473D-3 § is assigned to C%

~ O

k
2C

@
Ok

N

(%=-32768.5 an Overflow error occurs
Overflow
Ok

INTEGER TO SINGLE OR DOUBLE PRECISION

No error is introduced. The converted value looks like the original value
with zeros to the right of the decimal point.

DISPLAY

S1=326

Ok

?S!
326

Ok

D#= 326

Ok

0#
326

Ok

SINGLE TO DOUBLE PRECISION

COMMENTS

326 is stored in S! as 326.08¢¢ but
it is displayed as 326

326 is stored in D# as
326.0000000000000 but it is dis-
played as 326

BASIC adds trailing zeros to the single precision number.

If the original value:

- has an exact binary representation, no error will be introduced

- does not have an exact binary representation, an arithmetic error is
introduced when converting the value.

Examples

DISPLAY

B#=1.5

Ok

?8#
1.5

Ok

C#=1.3

Ok

(%
1.29999995231628

Ok

COMMENTS

when entering B#=1.5, you store

1.5000000000000008, in B# but 1.5 is
displayed.

Note: 1.5 has an exact binary re-
presentation

When entering C# =1.3 you store
1.299999952316288 in C# but it is
displayed as 1.29999995231628,

Note: 1.3 does not have an exact
binary representation

DATA

Remarks

To avoid losing accuracy Yyou should keep single to double nrecision
conversions out of your programs. For example, whenever you assign a
constant value to a double-precision variable, you can force the constant
to be double-precision.

B#=1.3# B#= 1.30
Both store 1.3 in B#

When the single-precision value is stored in a variable, convert the
single-precision variable to a string with STR$ function (see Chapter 9),
then convert the resultant string back 1into a number with VAL (see
Chapter 9).

DISPLAY COMMENTS

LIST This program displays the value of B# losing
1¢ B8!'=1.3 accuracy.
2¢ B#=B!
3¢ PRINT B#
Ok
RUN

1.29999995231628
Ok
L1IST This program displays the value of B# without
1¢ B!=1.3 losing accuracy.

20 g#=VAL (STRS(B!))

3¢ PRINT B#

Ok

RUN

1.3

DOUBLE TO SINGLE PRECISION

This involves converting a number with up to 16 significant digits into a
number with no more than 7.

Only the first seven digits, rounded of the converted value, will be
valid.

gefore displaying or printing such a number BASIC rounds 1t to six dig-
its.

Note: If the double precision value is outside the range of single preci-
sion values an Overflow error occurs.

Example

DISPLAY COMMENTS
P!=2.83999996 2.040008 is stored in P! but is is
Ok displayed as 2.¢4
P!
2.04
Ok

ILLEGAL CONVERSIONS

You cannot convert numeric values to string or vice versa by an assign-
ment statement. For example:

€$=321.7

is illegal. (Use STRS and VAL functions to accomplish such conversions.
See Chapter 9).

SUBSCRIPTED VARIABLES AND ARRAYS

As mentioned before (see Chapter 1) a variable may be a simple variable
or a subscripted variable. Subscripted variables are elements of an
"array'.

An array 1s a collection of variables of the same type under one name.
You can distinguish them by the value(s) of one or more subscripts
appearing in parentheses after the array name. For example, if A 1s a one
dimensional array, A(@) is the first element, A(1) the second element,
and so on (supposing that the subscript lower bound is).

A subscript value must be a positive integer number, but any numeric
expression whose value is positive may be entered as a subscript. If its
value 1s not an integer, it is rounded to an integer.

DATA

An array may have any number of dimensions. A one dimensional array might
be thought of as a list of items. There may be many rows but only one
column. A two dimensional array is like a table of values. There may be
several rows and several columns of items.

To define an array you must:

- give 1t a name (any valid variable name may be assumed)

- establish the upper and lower subscript bounds.

To do that you have to use a DIM statement, and optionally an OPTION BASE
statement.

1f you specify 1n a program:
1¢ OPTION BASE 1
The lower bound of all arrays is 1.

1f you omit the OPTION BASE statement, or if you specify OPTION BASE @,
the lower bound of all arrays 1is @ (the default lower bound).

1t is also possible to re-define an array, by writing an ERASE statement
before a DIM statement (see below).

ONE DIMENS1ONAL ARRAYS

Suppose we have the following list of numbers:

17, -9, 32, 1¢5, -48

If you define a one dimensional numeric array V, you can store all the

values in the list introducing only one array variable and you can access
each array element by specifying the appropriate subscript.

Array V

Element Contents Each element 1n Array V 1is specified by its
V(@) 17 subscript. For example V(1) is -9 and V(3) is 1¢5.
V(1) -9 The subscript 1identifies the 1location of the
V(2) 32 element in the array.

V(3) 195
V(4) -48

MULT1 DIMENSIONAL ARRAYS

We may use a two dimensional array to store the values of a table. Sup-
pose we have the follcwing table:

NAME CODE COUNTRY SEX

Anna 21SAA Great Britain F

John 35ECK USA M

Richard 7OWST Sweden M
Table 4-7

This table contains 3 rows and 4 columns for a total of 12 string values.

1f you define a string array AS$ you can store all the values in the table
introducing only one array variable and you can access any array element
by specifying the appropriate subscripts.

SUBSCRIPT g 1 2 3
@ Anna 21SAA Great Britain F
1 John 35ECR USA M
2 Richard 7@WST Sweden M

Table 4-8 Array AS

Each element in array A$ is specified by its location in the array with
two subscripts, separated by a comma and enclosed within parentheses. The
first subscript designates the "row" in the array; the second subscript
designates the ''column'. For example:

DATA

AS(8,1) is the string 21SAA
A$(2,3) 1is the character M

You may define arrays with even more dimensions, but they are rarely
used.

DIM (PROGRAM/IMMEDIATE)

Specifies the array name, the number of dimensions and the subscript
upper bound per dimension. The DIM statement may specify one or more
arrays.

v

DIM)] array

Figure 4-2 DIM Statement

Where
SYNTAX ELEMENT MEANING DEFAULT VALUES
array is the array name.

Any legal variable
name may be used

upper bound 1s any positive nu-
meric constant or
variable. If it is
not an integer, it
is rounded to the
nearest integer

Example

IF you enter...

if no DIM is specifed,
an upper bound of 1@ is
assumed for each dimen-
sion and the number of
dimensions are set when
you refer to an array
element in your program

THEN. ..

19 DIM A(S), B$(20,3¢) KM you set up a one Jdimensional array A with
subscripts from @ to 5, and a two dimen-
sional string array B$ with subscripts from

g,8 to 28, 30.

Note: A 1is

numeric, unless differently

stated by a DEFSTR statement

Number of Dimensions

With BASIC, you may have as many dimensions in your array as you like,
depending on the available memory. One and two dimensional arrays are the

most frequently used.

If no DIM is specified, the first reference to an array element in the
program will create the array with the specified number of dimensions.

For example, if a program statement refers to:

AR1(3,5,149)

Then AR1 is created with 3 dimensions and a default upper bound of 1¢ for

each dimension.

DATA

Number of Elements per Dimension

IF...

no DIM is used

DIM is used

To Define an Array

YOU MUST...

establish the sub-
script lower bound

assign a name to the
array

establish the number
of dimensions

establish the sub-
script upper bound per
dimens:on

AND 1F...

OPTION BASE @ is set

OPTION BASE 1 is set

OPTION BASE @ is set

OPTION BASE 1 is set

AND EITHER...

use an OPTION BASE 1
statement

use a DIM statement

THEN. ..

11 elements (subscripts
@g-1¢ are allowed in
each dimension)

19 elements (subscripts
1-1@ are allowed in
v '~h dimension)

the number of elements
in each dimension is
calculated by adding 1
to each upper bound
subscript

the number of elements
in each dimension co-
incides with each upper
bound subscript

OR...

adopt the default

OPTION BASE @

refer an array element
within the program.

Note: 1In this case a
subscript upper bound

of 14 for each dimen-
sion is assumed.

Remarks

- the DIM statement sets all the elements of the specified arrays to an

initial value of zero

- @ DIM statement cannot be preceded by an array reference

- a DIM statement does not set the subscript upper bound per dimension,
in case it is jumped over. For example:

D1ISPLAY
LIST
19 1=1
28 GOTO 4¢
3¢ DIM A(5@)
40 A(19)=3
5@ A(11)=45
Ok
RUN

Subscript out of range in 5¢
Ok

ERASE (PROGRAM/IMMEDIATE)

Releases space and variable names
data is lost and the array(s) no lon

Figure 4-3 ERASE Statement

COMMENTS
The M20 will display:
Subscript out of range in 5¢
when statement 5@ is executed, as
statement 3¢ is jumped over and an

upper bound of 18 is assumed by
default

previously reserved for arrays. The
ger exist.

array

DATA

Example
DISPLAY COMMENTS
19 DIM A(15,15),B(14, 2¢) upon execution of statement 194,
. arrays A and B are deleted and the
. corresponding memory space is made
199 ZRASE A,B free. You may define other arrays
118 DIM A (198),8(2,2,2) (see statement 11¢) with the same
names but different numbers of
dimensions and upper bounds
Remarks

It is not normally good programming practice to reuse an identifier. This
may generate errors or reduce the program readability. You may, however,
find it useful to redeclare an erased array; for example, when an array
name is known by a subroutine and you want to pass arrays with different
number of dimensions or subscript upper bounds to this subroutine.

OPTION BASE (PROGRAM/IMMEDIATE)

Declares the lower bound for array subscripts.

—{ oPTION BASE ﬁ
()

Figure 4-4 OPTION BASE Statement

Default Value

OPTION BASE @ is assumed by default (i.e. if you do not write any OPTION
BASE statement in your program.)

Example

IF you enter... THEN. ..
1@ OPTION BASE 1 the lower bound of al] arrays is 1

OR
OPTION BASE 1
(in immediate mode)

Remarks

You will find the OPTION BASE 1 useful when converting programs from
other machines to your M20. Many older BASICs number all arrays from 1.

The OPTION BASE statement cannot be preceded by a DIM statement or by an
array reference.

5. HOW BASIC INPUTS DATA

ABOUT THIS CHAPTER

This chapter will describe some ways to supply data to the computer via
your program.

We shall examine:

- the CLEAR, LET and SWAP statements

- the INPUT and LINE INPUT statement

- the DATA, READ and RESTORE statements.

Other ways to supply data, using external files, will be examined later,
(see Chapter 12).

CONTENTS

ASSIGNMENT STATEMENTS 5-1
CLEAR (PROGRAM/IMMEDIATE) 5-1
LET (PROGRAM/IMMEDIATE) 5-3
SWAP (PROGRAM/IMMEDIATE) 5-4
THE INTERNAL DATA FILE 5-5

DATA/READ/RESTORE (PROGRAM) 5-5

INPUT STATEMENTS 5-8

INPUT (PROGRAM) 5-9

LINE INPUT (PROGRAM) 5-12

HOW BASIC INPUTS DATA

ASSIGNMENT STATEMENTS

There are three assignment statements in BASIC:

- the CLEAR statement, which allows you to set all numeric variables to
zero and all string variables to null.

- the LET statement, which allows you to assign the value of an expres-
sion to a variable. The variable and the expression must be either both
numeric or both string

- the SWAP statement, which allows you to exchange the values of two
variables, provided they are the same type (integer, single-precision,
double-precision, string).

LET and SWAP are often used as immediate statements for quick computa-

tions.

CLEAR (PROGRAM/IMMEDIATE)

Sets all numeric variables to zero, all string variables to null, closes

all open data files and windows (see Chapter 14) and clears the screen.

CLEAR optionally sets the amount of user memory available for BASIC
programs and the amount of stack space.

PR,
o memory stack | ll’

Figure 5-1 CLEAR Statement

Where
SYNTAX ELEMENT MEANING
memory sets the amount of memory available for BASIC

programs. This value may also be set by the PCOS

command SBASIC. If omitted, its value is either
that established by the SBASIC command, or 37¢¢@
(as a second alternative).

stack sets aside stack space for BASIC. The default
value is 512 bytes or one-eighth of the
available memory whichever is smaller. The stack
is a part of memory available for BASIC used to
store return addresses of subprograms, functions

etc.

Examples

DISPLAY COMMENTS

CLEAR clears variables, closes data files and windows,
and clears the screen. The memory is either that
established by the SBASIC command, or 37¢¢¢g
bytes. The stack is assumed by default.

CLEAR ,32768 as in the example above, but memory is set to
32768 bytes.

CLEAR ,,2000 as 1n the first example, but stack is set to
2009 bytes.

CLEAR ,32768,2¢00 as in the first example, but memory is set to
32768 bytes and stack to 2¢@@ bytes.

Remarks

BASIC automatically sets all numeric variables to zero and all string
variables to null at the beginning of the execution of a program (except
variables defined in the COMMON area, if the program is CHAINed tc
another, see Chapter 11).

BASIC allocates string space dynamically. An '"Qut of string space' error
occurs only if there is no free memory left for BASIC to use.

HOW BASIC INPUTS DATA

LET (PROGRAM/IMMEDIATE)

Assigns a value to a variable.

@ variable h’@——b expression pF——s

Figure 5-2 LET Statement

Examples
IF you enter ... THEN. ..
LET K = 1.5 I the value 1.5 s assigned to the numeric
variable K
LET X = K + 2 the value of the numeric expression K + 2 is
assigned to the numeric variable X
AS(1) = "ABC" the value of the string constant "ABC" 1is as-

signed to the subscripted string variable AS(1).

Note: The keyword LET is optional

Numeric Assignments

If the data-type of the value resulting from the evaluation of the
numeric expression is different from the type of the receiving variable,
BASIC converts the type of the expression value to the type of the
receiving variable, following the rules we have just seen (see NUMERIC
CONVERSIONS paragraph in Chapter 4).

Rounding or overflow may occur, if the receiving variable is not able to
contain the computed value.

String Assignment
String assignment is performed by moving the string expression value

character by character into the receiving variable. The operation ends
when all the characters have been movad.

Remarks

Simultaneous assignments are not allowed. If you enter for instance:

1909 LET B% = C% = ¢ G

BASIC WOULD INTERPRET THE SECOND EQUAL SIGN AS A RELATIONAL OPERATOR and
set B% equal to -1 (i.e. true) if C% equalled @, and @ (i.e. false) if C%

is different from zero (for a fuller explanation of relational expres-
sions see Chapter 6).

SWAP (PROGRAM/IMMEDIATE)

Allows you to exchange the values of two simple variables. Any type of
variable may be SWAPped (integer, single-precision, double-precision,
string) but the two variables must be of the same type or a 'Type
mismatch" error occurs. They must also be initialized, or an "lllegal
function call' error occurs.

SWAP variable —’Q—-‘ variable f—

Figure 5-3 SWAP Statement

Example

DISPLAY COMMENTS
L1ST Statement 5@ SWAPs the values of A$ and 8§,
19 AS = " ONE " statement 4@ displays ONE FOR ALL, statement 69
20 85 = " ALL " displays ALL FOR ONE.

3g C$ =" FOR ™

HOW BASIC INPUTS DATA

4% PRINT AS$;CS$;BS
5@ SWAP AS,BS

6@ PRINT AS$;CS;BS
Ok

RUN

ONE FOR ALL

ALL FOR ONE

Ok

THE INTERNAL DATA FILE

Many problems require that a large number of constants be entered inio
the computer. To do this, you could use many LET, INPUT, or LINE INPUT
statements.

It is clear, though, that this would be arduous, if you had a long list
of data to be entered. A much more convenient and effective way to enter
such constants is by using the DATA, READ, and RESTORE statements. DATA
statements create an "internal" file, i.e. a sequence of data belongs to
the program, which must be transferred into the program variables by one
or more READ statements. The RESTORE statement allows you to reposition

the pointer at the beginning of the file or to a specified line number.

DATA/READ/RESTORE (PROGRAM)
DATA creates an internal data file.

READ reads data from one or more DATA statements into the specified
variables.

QESTORE moves the pointer either to the beginning of an internal data
file (created by one or more DATA statements) or to a specified line
number.

Figure 5-4 DATA Statement

Figure 5-5 READ Statement

constant

variable |

line l
RESTORE number

Figure 5-6 RESTORE Statement
Examples

DISPLAY

LIST

14 READ A,B,
2@ DATA 1,2 ,5,6,7,8,9,
30 PRINT A;B;C;D;E;F;G;H;1;
Ok

RUN

1 2 3 4 5 6 7 8 9 19
Ok

COMMENTS

the values 1 to 10 are assigned to
ten variables

HOW BASIC INPUTS DATA

LIST
1¢ DATA 1,2,3,4
2 READ A,8,C,D,E,F,G,H,1,]
39 DATA 5,6,7
4% DATA 8,9,10
5@ PRINT A;B;C;D;E;F;G;H;1;]
Ok
RUN
12 3 4 5 6 7 8 9 19
Ok

LIST

1@ READ A,B,C

2¢ DATA 1,2,3,4,5,6,7,8,9,12
3@ PRINT A:B;C

4¢ READ D,E,F,G

5@ PRINT D;E;F:G

RUN

LIST

19 READ A.B,C,D
2@ DATA 1,2,3,4
Ok

RUN

Out of data

Ok

E

LIST
14 READ A,B,C
2@ DATA 15,25,35,5,6,12
3@ PRINT A;B;C
4@ RESTORE
5@ READ X,Y,Z
6@ PRINT X;Y;2Z
Ck
RUN
15 25 35

statements 18, 28, 3@, and 4@ have
the same effect as statements 1§
and 2@ in the previous example.

Notz: A DATA statement in a program
need not correspond to a specific
READ statement. This 1is because
before program execution, a data
file (the "internal file" as it is
often called) 1s created. 1t con-
tains all the values of all the
DATA statements 1n the program 1in
line number sequence. When the
program is executed, READ takes its
values from this file

statement 1@ assigns the values
1,2, and 3 to A,B,and C; statement
49 assigns the values 4,5,6 and 7
to D,E,F and G respectively.

Note: When you access a data file
you do not have to read all the
values stored in 1t

M20 displays an error message:
Qut of data

and returns to Command Mode, be-
cause there are fewer data 1items
than variables

statement 1@ causes the variable A
to be assigned the value 15, B the
value 25, and C the value 35. The
RESTORE statement at line 4§ will
cause values to be assigned start-
ing from the beginning of the file
again. Hence, statement 6@ causes
the very same values assigned to
A,B, and C, (15,25,35) to be
assigned, respectively, to X, Y,

15 25 35 and Z. 1f RESTORE were not present,
Ok X would be assigned the value 5, Y
the value 6, and Z the value 12

LIST statement 1@ causes X1$ to be
18 READ X1§8, Y1$, 21 assigned ii.e value DENVER, (in-
2¢ DATA '"DENVER,', COLORADO, 88211 cluding the final comma), Y1$ the
3¢ PRINT X1$;Y1$;21 value COLORADO, and Z1 the value
Ok 8@211.

RUN

DENVER,COLORADO 8@211 Note: READ statements may contain
Ok both numeric and string variables,

DATA statements may contain both
aumeric and string data.

The data-type of en entry in the
data sequence must correspond to
the type of the vartable to which
it 1s to be assigned; i.e., numeric
variables require numeric constants
as data (conversicn from one num-
eric type to another is allowed,
for example you may have a single
precision floating point constant
associated with an integer vari-
able) and string variables require
quoted or unguoted strings as data.
A gquoted string is required if *he

string contains commas (e.qg.
DENVER,) or initial or final blznks
(e.g. the blank preceeding COLORADO
in statement 2@ is skipped as
COLORADO is not a quoted string)

INPUT STATEMENTS

The DATA statement uses constants to assign values to variables. You mus*
know, when you are entering your program, what values you want to assign.
Furthermore the values contained in the internal data file are saved
whenever your program 1s saved. Hence, these values are relatively
permanent; they can be changed only by changing one or more DATA
statements in the program.

HOW BASIC INPUTS DATA

The INPUT and a LINE INPUT statements, offer you more flexibility. Using
them you enter values only when the program is executed. When one of
these statements is encountered, program execution is suspended and M20
walts for you to enter data from the keyboard.

As a consequence, after you have saved a program, you can run it at any
time, and supply values to the computer on the spot, without changing the
program itself. This flexibility allows you to write a general program to
solve a particular problem before you know the specific values the
program will use. However, if you have a lot of data to enter, it is
better to use an internal file (permanent data) on one or more external
files (see Chapter 12).

The INPUT statement allows you to enter one or more numeric or string
data-items (separated by a comma). They will be assigned to the vari-
able(s) specified in the statement. The LINE INPUT statement allows you
to enter an entire input line and assign it to a string variable.

You may insert a prompt message in both INPUT and LINE INPUT statements.

This will be displayed on the screen when the statement is executed to
remind you what to enter.

INPUT (PROGRAM)

Reads data-item(s) from the keyboard and assigns it/them to one or more
specified variables.

string

@ 0 | prompt " H | variable

Figure 5-7 INPUT Statement

A Question Mark

A question mark (followed by a blank) is automatically displayed as a
standard prompt when executing an INPUT statement, even though the
statement does not include a prompt-string.

DISPLAY COMMENTS

LIST When executing statement 1¢ the standard

19 INPUT X prompt (?) is displayed, indicating that

20 PRINT X ''SQUARED 1S" XA2 the program is waiting for data.

3@ END

Ok No prompt string is used in the INPUT
statement in this case (see statement 1¢)

RUN

?5

5 SQUARED 1S 25
Ok

Self Prompting

By inserting a prompt-string in an INPUT statement, you may prompt for
each value required.

OISPLAY COMMENTS
LIST the user prompt (Radius) is displayed before the
19 P1L = 3.1415 standard prompt (?), when statement 2§ is
28 INPUT "Radius';R encountered
3@ A=PI*RA2
40 PRINT "Area';A
5¢ GOTO 2¢
Ok
RUN
Radius? 7.4
Area 172.029
Radius?
etc.

To Suppress the Standard Prompt

You may suppress the standard prompt (?) by writing a comma (,) after
your prompt.

HOW BASIC INPUTS DATA

DISPLAY
LIST
1¢ INPUT "Date ", DS
2@ PRINT DS
Ok
RUN
Date 3@8/0ct/69
3¢/0ct/69
Ok

COMMENTS

the standard prompt (?) is suppressed because a
comma (,) - instead of a semicolon (;) - follows
the user prompt in statement 10

To Suppress the Echo of

You may suppress the echo of [l on the screen, by writing a semicolon

(;) after INPUT.

DISPLAY

LIST

1@ INPUT; 'Date";D$
2@ PRINT ' J.C."

Ok

RUN

Date? 3@/0ct/69 J.C.

To Enter a List of Data

COMMENTS

the echo on the screen of the carriage-return/
line-feed is suppressed by inserting a semicolon
(;) immediately after INPUT (see statement 1¢)

The next PRINT/INPUT operation will be executed
from the next screen position (see statement 2@)

An INPUT statement allows you to enter one or more numeric or string data

from the keyboard.

DISPLAY

LIST
1¢ INPUT A,BS,C(3)
2@ PRINT A;BS$;C(3)
3¢ 60TO 19
Ok
RUN
? 1.2,ABC,4
1.2 ABC 4

COMMENTS

when statement 14 1is executed, you must enter
three data-items.

The first must be numeric (1.2), the second
string (ABC) (and need not to be surrounded by
quotation marks), the third (4) numeric. They
will be assigned to variables A, B$ and C(3)
respectively.

? ABD,1.3,5
?Redo from start
?1.3,A8D0,5

1.3 ABD 5

?AC

Break in 1¢

Ok

?Redo from Start

When statement 10 is executed for the second
time, suppose that you enter a datum of the
wrong type, (ABD) i.e. a string instead of a
number. The system displays:

? Redo from start
and you must re-enter the value.

To interrupt program execution press ESLIN K9
To resume execution press (O W N | [CR B

Note: The data-type of a keyboard entry must
correspond to the type of the variable to which
it is to be assigned; 1i.e. numeric variables
require numeric constants as data (conversion
from one numeric type to another is allowed, for
example you may enter a double precision
floating point constant to initialize an integer
variable) and string variables require quoted or
unquoted strings as data. A quoted string is
required if the string contains commas or
initial or final blanks. Numeric items may be
input 1into string variables. If you input a
number into a string and then you wish to
re-obtain its numeric value use the VAL function
(see Chapter 9), to prevent type mismatch errors

Responding to INPUT with too many or too few items, or with the wrong
type of value (string instead of numeric) causes the message '?Redo from

start" to be displayed

No assignment of input values is made until an

acceptable response is given,

LINE INPUT (PROGRAM)

Inputs an entire line up to a carriage return/line feed and assigns it to
a string variable, without the use of delimiters (255 characters is the
maximum length of a line).

HOW BASIC INPUTS DATA

LINE INPUT s "

Figure 5-8 LINE INPUT Statement

A Question Mark within the Prompt

prompt |
string

string
variable

The standard prompt (?) does not appear when executing a LINE INPUT
statement. You can close your own prompt with a question mark if you

wish,

DISPLAY

LIST

19 LINE INPUT "Name? ''";N$
2¢ PRINT '""JONES"

Ok

RUN

Hame? LINDA

JONES

Ok

To Suppress the Echo of

You may suppress the echo of [l on

(;) after LINE INPUT.

DISPLAY

LIST

19 LINE INPUT;"Name? '';N$
2¢ PRINT ' JONES"

Ok

RUN

“lame? LINDA JONES

Ok

COMMENTS

the prompt string (Name?) is
displayed before input is accepted.

All input from the end of the
prompt to 1s assigned to the
string-variable (N$)

the screen, by writing a semicolon

COMMENTS

does not echo a carriage
return/line-feed, as LINE INPUT
(see statement 1¢) is followed by a
semicolon (;).

The next PRINT/INPUT operation (see
statement 2f) will be executed from
the next screen positicn

6. EXPRESSIONS

ABOUT THIS CHAPTER

This chapter classifies BASIC expressions as numeric, string, relational
or logical. It gives the rules the user must respect in forming expres-
sions as well as the priority rules BASIC assumes in evaluating them.

CONTENTS

NUMERIC EXPRESSIONS 6-1

STRING EXPRESSIONS 6-8

RELATIONAL EXPRESSIONS 6-9

LOGICAL EXPRESSIONS 6-12

OPERATOR PRIOQRITY 6-15

EXPRESSIONS

NUMERIC EXPRESSIONS

Most of the programs you write will involve some numeric calculations.

As you may have noticed in our examples, only variables appear to the
left of the equal sign in LET statements.

Both variables and constants, however, can appear to the right of the
equal sign. They can, in fact, be connected by means of special symbols,
called operators, to indicate numeric operations. Some examples follow:

70 LET L=ACCOUNT

60 LET Y = 1641.7412
208 M = 83-44+37/N
20 LET X = X+1

The last statement is particularly interesting. Most LET statements look
like algebraic equations; this last one does not. The equation X = X+1
makes no sense algebraically. The LET statement assigns a value to a
variable: it does not imply that the values to the left and right of the
equal sign are mathematically equal. This last statement, which is valid
and meaningful, can be interpreted as follows: add 1 to the value repre-
sented by variable X, and assign this new value to X. This new value of X
will replace the old one. Thus the equal sign is itself an operator.

That part of the LET statement to the right of the equal sign is called
an expression. The expression specifies the value to be assigned to the
variable to its left. (The evaluation of an expression yields a single
numeric value.) A numeric expression can be composed of a single number
or a single numeric variable as well as some combination of numbers,
numeric variables, and operators. Remember, however, that a numeric
variable must be assigned a value before it is used in an expression. If
it is not, the variable automatically assumes the value #.

Some examples of numeric expressions are shown below:
X
X+Y+SPEED

6.4 A2
-7+A/CYAR

Numeric Operators

As mentioned before, BASIC uses operators to indicate numeric operations.
There are eight numeric operations, each with its own symbol.

SYMBOL

MOD

ro

OPERATION

addition

subtraction

integer division.

The operands are rounded
to the nearest integers
(which must be in the
range - 32768 to 32767)
before the division is
performed, and the quo-
tient is truncated to

an integer

mcdulus arithmetic.

It gives the integer
value which is the re-
mainder of an integer
division

multiplication

Division

negation
It changes the sign of the
operand

EXAMPLES

X = 3.2
Ok
?2X+1.1
4.3

Ok

?X-1.3
1.9
Ok

210\ 4
2
Ok
? 25,68\ 6.99
3
Ok

?18.4 MOD 4
2
Ok

(18/4 = 2 with remainder 2)

?25.68 MOD 6.99
5
Ok

(26/7 = 3 with remainder 5)

?X*3.92
12.544
Ok

?3/6.05
@.495868
Ok

?-X

-3.2
Ok

RACTA | atimiie amm

s

EXPRESSIONS

A Exponentiation ?X A3
32.768
Ok
Remarks

Be sure to include the * when specifying multiplication. 1In mathematics,
6X 1s valid; in BASIC, 6*X must be written to express 6 times X,

For your convenience, all the numeric operators used in BASIC have been
placed on the M20 Keyboard both in the numeric and alphanumeric section
(except the exponentiation symbol, which appears in the alphanumeric
section only and MOD which must be entered typing its three characters).

Numeric Operator Priority

When two or more operators are used in an expression, 1t often seems
ambiguous. For example, does the expression:

3*L - 6%W
mean

(3*L) - (6*W)
or

3* (L - 6*W)?

BASIC has built-in priorities for performing different numeric opera-
tions.

Numeric operations and priority rules are as follows (in order of des-
cending priority).

PRIORITY OPERATION COMMENTS

HIGHEST exponentiation

negation

multiplication and Division Multiplication and division have
the same priority

integer division
modulus arithmetic

addition and subtraction Addition and subtraction have
LOWEST the same priority

Remarks

Referring to the preceding example, we Mmay now say that 3*L - 6*4 means
(3*L) - (6*).

For operators with the same priority (e.g./and *) operations are
carried out from left to right. Thus, 9/3*3 is the equivalent of (9/3)*3
ylelding a result of 9.

Using Parentheses to Change Priority

There are times when you will want to change the normal priority of
operations. To do this you use pairs of parentheses, exactly as you would
in mathematics. When parentheses are used, the operations within the
innermost pair of parentheses are performed first, followed by operations
within the second innermost pair, and so forth. Within a given pair of
parentheses, the normal priority of operations apply.

A simple example of the use of parentheses follows.

Suppose you want to compute (SX)Z. If you enter this expression in BASIC
as 5*XA2, first X 1is squared, then the result is multiplied by 5 because
exponentiation has a higher priority than multiplication. To change this,
simply enter the expression as (5*X)A2. In this case: first X 1is
multiplied by 5, then the result 1s squared.

The more complicated a numeric expression is, the more complicated its
3ASIC equivalent will be. In the following examples, numeric expressions
are shown with their BASIC equivalents, The examples should help you get
a better feel for the rules of priority:

EXPRESSIONS

Examples

NUMERIC EXPRESSION

2x + 5

2(x + 4)

2
Xonty

Remarks

1t is good programming practic
clarity of an expression, even w

BASIC EQUIVALENT

(X+Y+2)/2

X+(Y+2)/2

2% X+5

2% (X+4)

XA2+3

(X+3)A2

(X+3)A2/4

(XA2/6)* ((X+Y)/2))

INTERPRETATION

. Add X, Y and Z
. Divide the sum by 2

. Add Y to Z
. Divide the sum by 2
. Add X to the result

. Multiply X by 2
. Add 5 to the result

. Add 4 to X
. Multiply the sum by

2

. Square X
. Add 3 to the result

. Add 3 to X
. Square the result

. Add 3 to X
. Square the sum
. Divide the result by

4

. Square X and divide

by 6

. Add X to Y and
divide by 2

. Multiply the two
results by each
other

e to use parentheses whenever you doubt the

hen they are not strictly necessary.

The expressions used in your program can get very complex. If you save a
program and do not run it often, you can easily forget exactly what
computations are being performed. For this reason, you may find it usefuil
to put descriptive remarks in a program as you write it. BASIC provides
the REM statement and the comment fields specifically for this purpose.

Type of Expression

The type of a numeric expression, i,e. the data-type of the result of the
evaluation of an expression (before assigning it to a variable) depends
on the type of its operands.

There are four different situations depending on the type of the two
operands involved. If the expression involves more than two operands, it

can be considered as a series of calculations involving two operands.

The table below summarises the four possible situations.

IF... THEN. .. DISPLAY
both operands are of the result is also A# = 3,29745219
the same numeric type of that type Ok
(integer, single-preci- B# = 4.5729719D-1
sion or double-preci- Ok
sion A# +B#
3.75474938

Ok
one operand is inte- the result is I% = 25
ger and the other single-precision Ok
is single-precision C! = 4.2975

Ok

?1%-C!

20.7@¢25

Ok
one operand is inte- the result is - ?1%*AH
ger and the other is double-precision 82.4363@475
double-precision Ok
one operand is single- the resylt is ?C!/B#
precision and the double-precision 9.39760887993736
other is double- Ok
precision

EXPRESSIONS

Rounding, Overflow and Underflow

Floating point types are forms of approximation to the real numbers of

mathematics.

IF...

one or more operands
in a numeric expres-
sion are floating
point

the value of the ex-
pression is bigger
than the maximum
length allowed for
that data-type

a division by zero is
encountered

the evaluation of an
exponentiation results
in zero being raised
to a negative power
the value of the ex-
pression is smaller
than the smallest re-
presentable value

in a numeric assign-
ment, the type of the
expression is differ-
ent from the type of
the receiving variable

THEN. ..

calculations are approximate and accuracy can be
lost. 1f this happens the less significant
digits are lost and the last digit maintained is
rounded off

an '"Overflow' error message 1is displayed,
machine infinity* with the algebraically correct
sign is supplied as the result, and execution
continues

the "Division by zero' error message is display-
ed, machine infinity* with the sign of the
numerator 1is supplied as the result of the
division, and execution continues

the "Division by zero'" error message 1s display-
ed, positive machine infinity* is supplied as
the result of the exponentiation, and execution
continues

the value becomes zero (Underflow) and execution
continues

the expression is automatically converted to the
type of the receiving variable

Note: Machine infinity is displayed as 3.40282E+38.

Undefined Values

If a numeric variable in a numeric expression has not yet been set, it is
set to zero.

Undetermined Forms

The evaluation of a numeric expression may result in an undetermined
form, such as:

§/@: the message 'Division by zero" is displayed and the value

3.40282E+38 (machine infinity) is supplied
PAB: the value is assumed to be 1.

STRING EXPRESSIONS

BASIC permits the use of string expressions, similar in many ways to the
numeric expressions we have just looked at. A string expression can be
either a string constant, a single string variable, a string array
element, a string function, or a mixture of them linked by plus signs

(+).

By using the plus sign, strings can be joined - "concatenated" is the
technical term. These are some examples of string expressions in LET
statements:

5¢ LET AS = "Chicago,"
9@ BS "IL.,"
180 NS = AS+BS+""USA"

The concatenation in statement 198 would result in NS being
assigned the string:

Chicago, IL.,USA
When two or more strings are concatenated, the length of the resulting
string is the sum of the individual strings. The expression evaluation

proceeds from left to right.

Be careful not to assign more than 255 characters to a string variable.
In this case, the system issues an error message:

String too long

EXPRESSIONS

Remark

A string operand appearing in a string expression may be the null string
("'). The null string will also be the default value of a non-initialized
string variable.

RELATIONAL EXPRESSIONS

Relational expressions compare either two numeric or two string expres-
sions by means of a relational operator.

Relational Operators

The relational operators are:

= equals (the equals sign is also used to assign a value to a
variable, see LcT statement)

> greater than

< less than

>= or => greater than or equal to
<= or =< less than or equal to

< >or > < not equal to

It is illegal to compare a numeric expression with a string expression
and vice versa. For example:

A+ B>C is valid
C +D>=E + F is valid
AS = BS is valid
BS >(1 is wrong if C1 is a numeric variable.

Comparison of numbers has an obvious meaning. Character strings, may also
be compared, with the outcome dependent on the numeric value of the
character's representation. (This is taken to be the decimal ASCII value
of each character within the string). String scanning is performed from
left to right, character by character and ends when the first pair of
different characters is encountered. The result of the comparison is made
on the basis of the first pair of different characters.

6-9

Numeric or string expressions are performed first, then relational opera-
tors are applied to the result of such expressions.

For example, to write

A>8 + C
and
A>(B + C)

is equivalent.

The result of a relational expression is numeric. It is displayed as
either -1 (if the relation is true) or @ (if it is false).

Examples

Let us look at some examples using relational expressions. First let ys
assign values to the variables X and Y.

DISPLAY

1

x
1]

Ok
Y=2
Ok

’X>Y
Ok

?X<>Y.
-1
Ok

?SIN (X) < ¢
g
Ok

?X MOD Y=1
-1
Ok

COMMENTS

BASIC executes the specified assignments

BASIC displays @ (i.e. false), as X 1is not
greater than Y

BASIC displays -1 (i.e. true), as X is different
from Y

BASIC displays g (i.e. false), as SIN(X) is
positive

BASIC displays -1 (i.e. true), as X MOD Y
equals 1

EXPRESSIONS

?"TOKYO'" > ""FRANKFURT" BASIC displays -1 (i.e. true) as TOKYO is great-

-1 er than FRANKFURT (i.e. it comes after FRANKFURT

Ok in alphabetical order)

?"TOKYQ" >"TOKYO1" BASIC displays @ (i.e. false) as TOKY0 is less
] than TOKYO1. Where two strings are of unequal

Ok length and the shorter string exactly matches

the first part of the larger string then the
longer string is considered greater than the
shorter one

Using Relational Expressions

The result of a relational expression may be used to make a decision
regarding program flow. You can use relational expressions in the fol-
lowing control statements:

- IF... GOTO... ELSE, or
- IF... THEN... ELSE, or
- WHILE

where a condition is tested to determine later operations in the program
(see Chapter 8).

The condition may be a numeric, relational or logical expression. BASIC
determines whether the condition (after IF or WHILE) is true or false by
testing the result of the expression for non-zero and zero respectively.
A non-zero result is assumed to be true, and a zero result is false.

For example, the following statement:

168 1F AS>BS$ THEN 5¢

will transfer control of execution *o statement 5@ 1if the condition
(A$ >BS) 1is true, (i.e. AS$ greater tian 33). If the condition is false
(i.e. AS not greater than B$) the nex“ statement will be executed.

LOGICAL EXPRESSIONS

A logical expression consists of one operand preceded by the logical
operator NOT, two operands separated by another logical operator (AND,
OR, XOR, EQV and IMP), or two operands separated by a logical operator
and NOT.

The operands in a logical expression may be numeric or relational expres-
sions. Both have numeric values.

The result of a logical expression is also numeric: it is an integer
value with any combination of bits in the range -32768 to 32767.

Examples of logical expressions are:

NOT X is valid

X AND Y 1s valid

A>B OR C>pD is valid

[% AND A$<BS$ is valid

AS XOR BS 1s not valid (as the operands are string)

Logical Operators

Logical operators work by converting their operands to sixteen bit,
signed, two's complement integers in the range -32768 +o +32767. (1f the
operands are not in this range, an error occurs.) The given operation is
performed on these integers, each bit of the result being determined by
the corresponding bits in the two operands,

The logical operators are listed below in 3 table called the 'tryth
table". It describes graphically the results of the logical operations on
a bit-by-bit basis, Every possible combination of bits jis given. (Notice

A NOT A A B A AND B A OR B AXORBAEQVBAIMPB
1 2 1 1 1 1 /) 1 1
2 1 1 g 2 1 1 g ¢

2 1 /] 1 1 g 1

g g 2 g) 1 1

Table 6-1 The Truth Table

EXPRESSTONS

Logical Operator Priority

In an expression, logical operations are performed after numeric and
relational operations.

The table below lists logical operators in the order BASIC evaluates
them.

OPERATORS PRIORILITY

NOT HIGHEST
AND

OR

XOR

IMP

EQv LOWEST

Table 6-2 Logical Operator Priority

Examples

Let us look at some examples. First let us assign values to the variables
X, Y, AND Z.

DISPLAY COMMENTS
X%=0@ BASIC executes the specified assignments
0k
Y%=3
Ok
1%=5
Ok
?X%<Y% AND 7%=3 the result is false (@), as X%<Y% 1is true
1} (<1) but 2%=3 is false (@)
Ok
?X% 0R X% <Z% the result is true (-1), as X% is false (@)
-1 but X%<2Z% is true (-1)

0Ok

?63 AND 16 the result is 16, as

16
Ok 63 = binary 111111
16 = binary @19g09g
g19000
24 OR 2 the result is 6, as
Os 4 = binary 190
2 = binary @19
1149
?-1 OR-2 the result is -1, as
-1
Ok -1 = binary 1111111111111111
-2 = binary 111111111111111¢8
M111111111111 11
?8<2 AND 4=4 the result is true (-1), as
-1
Ok #<2 is true (-1), and
4=4 is true (-1)
?8 XOR Y%=3 the result is true (-1), as
-1
Ok g is false (@), and
Y%=3 1is true (-1)
?2% >Y% AND NOT "A'" >"g" the result is true (-1), as
-1 ‘
Ok 2% >Y% is true (-1), and

"A">"B" {s false (@)
Note: It is possible to write two consecutive

logical operators only if the second one is
the NOT operator

Using Logical Expressions
You can use logical expressions:

- to test a condition in the following control statements:

EXPRESSIONS

IF... GOTO... ELSE,
IF... THEN... ELSE,
WHILE

For example:
58 1F AS>BS and B<=C THEN 3¢¢

will transfer control of execution to statement 3@ if the condition
(AS>BS AND B<=C) is true (i.e. A$ greater than 85 and B less than or
equal to (). If the condition is false (i.e. A$ less than BS or B
greater than C) the next statement will be executed.

- to test words (16 bits) for a particular bit pattern. For example the
AND operator may be used to "mask' all but one of the bits of a status
word at a machine 1/0 port. The OR operator may be used to ''merge' two
words to create a particular binary value.

For example:

-1 AND 8 is 8
and:

-1 OR 8 is -1
as

[}

-1
8

binary 1111111111111111
binary #90000809000001000

OPERATOR PRIORITY

The table below lists all operators (numeric, string, relational, and
logical) in the order BASIC evaluates them.

OPERATORS PRIORITY
A (exponentiation) HIGHEST
- (negation)
* / (multiplication and division)
\ (integer division)

MOD (moaulus arithmetic)

+ - (addition and subtraction)
+ (string concatenation)
All relational operators
NOT
AND
OR
XO0R

1MP

EQV LOWEST

Table 6-3 Operator Priority

Remarks
- operators shown on the same line have equal precedence
- all relational operators have equal precedence

- evaluation order of expressions can be overridden by the use of paren-
theses. For example the evaluation order of:

NOT A>B8 AND C>D OR E>F

is different from the evaluation order of:
NOT (A>8 AND (C>D OR E >F))

if, for instance, A>B is true, C>D is false and E > F is true, the
first expression is true, whereas the second is false.

- the result of any expression can also be an operand, thus you can form
very complex expressions, for instance chaining two or more logical
expressions by a logical operator (as in the examples above). However
it is not good programming practice to write too complex expressions.

7. HOW BASIC OUTPUTS DATA

ABOUT THIS CHAPTER

You have now seen how to Input data to the M20 and how to process it.

In this chapter you will see how to set the screen or printer line width
(WIDTH command) and how to get results from the computer. We shall ex-
amine the LPRINT, PRINT, LPRINT USTIG and PRINT USING statements. They
allow you to output data either in a standard or in a user-defined
format.

CONTENTS

SETTING THE NUMBER OF NULLS 7-1
AND THE WIDTH

NULL (PROGRAM/IMMEDIATE) 7-1

WIDTH (PROGRAM/IMMEDIATE) 7-2

STANDARD FORMAT 7-3

LPRINT/PRINT 7-4

(PROGRAM/IMMEDIATE)

WRITE (PROGRAM/IMMEDIATE) 7-10
USER DEFINED FORMAT 7-11
LPRINT USING/PRINT USING 7-12

(PROGRAM/IMMEDIATE)

HOW BASIC OUTPUTS DATA

SETTING THE NUMBER OF NULLS AND THE WIDTH

The NULL command (which may also be used in a program) allows you to set
the number of nulls printed after each line.

The WIDTH command (which may also be used in a program) allows you to set
the screen or printer line width,

NULL (PROGRAM/IMMEDIATE)

Sets the number of nulls to be printed at the end of each line and hence
delays the printing of the next line.

Figure 7-1 NULL Command

Example

IF you enter...

NULL 2

numeric

NULL expression

THEN. ..
2 nulls will be printed after each line.

Note: The numeric expression is rounded to the
nearest integer (if necessary).

For 1¢-character-per—second tape punches the
numeric expression value should be >= 3. This
also identifies lines on the tape. When tapes
are not being punched, this value should be ¢ or
1 for teletypes and teletype-compatible CRTs.
This value should be 2 or 3 for 3@ cps hard copy
printers

WIDTH (PROGRAM/IMMEDIATE)

Sets screen or printer line width, when a
USING, LPRINT USING statement is executed or

PRINT, WRITE, LPRINT, PRINT
an error message is issued.

WIDTH LPRINT

numeric
expression

Figure 7-2 WIDTH Command

Default Values

Examples

1@ PRINT ”ABCDEFGHIJKLMNOPQRSTUVNXYZ”
RUN

ABCDEFGHIJKLMNOPQRSTUVNXYZ

Ok

WIDTH 18

Ok

RUN

ABCDEFGHIJKLMNOPQR

STUVWXYZ

Ok

Characteristics

IF. ..

THEN. ..

the LPRINT option is the line width is set for the screen only

omitted

7-2

HOW BASIC OUTPUTS DATA

LPRINT is included the line width is set for the line printer,
For example:

1@ WIDTH LPRINT 4

2@ LPRINT ''AAAABBBBCC"
RUN

Ok

AAAA
8688
cc

"

the numeric expression it is rounded to the nearest integer and must
value is not an integer have a value in the range 15 to 255.

If the rounded value is 255, the line width is
“infinite", that is, BASIC never inserts a
carriage return. However, the position of the
cursor or the print head, as given by the POS or
LPOS function, returns to zero after position
255.

If the rounded value is greater than 255 an
error is issued. (lllegal function call.)

STANDARD FORMAT

You may output your results in standard format by the PRINT, WRITE and
LPRINT statements. They can be used as immediate statements too. They
allow you to have the results of calculations either printed (LPRINT) or
displayed (PRINT and WRITE).

If you wish to output the results of two or more expressions on one line,
separate your expressions with commas (WRITE) and with comnas or
semicolons (PRINT, LPRINT).

With the WRITE statement each item displayed will be separated from the
last by a comma (and strings will be delimited by quotation marks). With
the PRINT and LPRINT statements, if you use commas, the results will be
separated, whereas semicolons will cause the results to be packed
together and the strings will not be delimited Dy quotation marks.

LPRINT/PRINT (PROGRAM/IMMEDIATE)
LPRINT prints a list of data in a standard format.

PRINT displays a list of data in a standard format. A question mark (?)
may be used instead of PRINT.

LPRINT < expression 7 W
numeric
SPC (| expression ’_‘Q——J

TAB
A ;<z>47 y
_ N Y
U
\. J

Fiqure 7-3 LPRINT Statement

PRINT 4()AA

S expression —
@ 0 | numeric
' ' expression
A) A
\ Y
k _m J/
A\
N)

Figure 7-4 PRINT Statement

HOW BASIC QUTPUTS DATA

Characteristics

IF..

an LPRINT (or a PRINT)
statement does not end
with a comma or semi-
colon

No expressions appear
in an LPRINT (or a
PRINT) statement

expressions in the
output list are sep-
arated by commas

THEN. ..

a new line of output is printed (or displayed)
when the statement is executed.

For example:

LIST

18 PRINT 1
20 PRINT 2
Ok

RUN

1

2
Ok

a line is skipped.

For example:

LIST

18 PRINT 1
2@ PRINT
3@ PRINT 2
Ok

RUN

1

2
Ok

This form of LPRINT (or PRINT) is useful for
producing spaces between output lines

each value is printed (or displayed) left justi-
fied in one of the 'print zones'" in which each
line is divided. (Each zone has 14 positions),

the list of expres-
sions has many en-
tries

one or more numeric
expressions appear in
an LPRINT (or a PRINT)
Statement

For example:

LIST

19 AS = "For June..."

20 X = .353

3@ PRINT "Results", AS$, X

Ok

RUN

Results For June... .353
Ok

Note: Each positive value (in this case .353) is
preceded by a space (see below).

The number of print zones on each line depends
on the maximum number of characters each can
contain. This may be specified by the WIDTH
command or assumed by default,

String values displayed (or printeg with LPRINT)
are not delimited by quotation marks

two or more lines of output may be produced.

For example:

WIDTH 31
Ok
PRINT 1, 142, 2+3, 7, 9, "ABCD"
1 3

5 7

9 ABCD
Ok

Note: Each positive value is preceded by a space
(see below)

- each value printed or displayed is always
followed by a space

- €ach positive value is Preceded by a space

= each negative valye is preceded by a minus
sign

HOW BASIC OQUTPUTS DATA

a comma follows
the last expression
in the list

- each single-precision value that can be rep-
resented with 6 or fewer digits in the fixed
point format as accurately as 1t can be
represented in the floating point (or 'ex-
ponential') format, is output using the fixed
point format

- each double-precision value that can be rep-
resented with 15 or fewer digits in the fixed
point format as accurately as 1t can be
represented in the floating point (or 'ex-
ponential'') format, is output using the fixed
point format:

For example:

PRINT 18N -6
990991
Ok
PRINT 18 A7
1E-97
Ok
PRINT 1D-15, 1D-16
. 99009900090090" 10-16
Ok

Note: The second value is displayed left justi-
fied in the third print zone (as the first value
overflows into the second print zone)

the next character or digit issued as output
(that is, the first character or digit in a
subsequent PRINT or INPUT or LPRINT operation)
is printed or displayed on the same line (at the
beginning of the next print zone) if sufficient
space is available (otherwise on a new line).

a semicolon follows
the last expression
in the list

commas are uysed
consecutively

For example:

LIST

19 AS = "For July..."

280 X = .49

3@ PRINT "Results', AS,

40 PRINT X

Ok

RUN

Results For July... .491

the next character or digit issued as output
(that is, the first character or digit in a
subsequent PRINT, or INPUT or LPRINT operation)
is printed or displayed on the same line (at the
cursor position) - if sufficient space is
available, otherwise on a new line.

For example:

LIST
19 INPUT X
2@ PRINT X ''SQUARED 15" XA 2 "AND'';
39 PRINT X "CUBED 15" X A3
4@ PRINT
5¢ GOTO 19
Ok
RUN
?9
9 SQUARED 1S 81 AND 9 CUBED 1S 729

? 21
21 SQUARED 1S 441 AND 21 CUBED 15 9261

?

the effect of each comma 1is to position the

print head (or the cursor) at the start of the
next zone.

The use of commas in this way lets you display
(or print) data widely spaced.

HOW BASIC OUTPUTS DATA

semicolons or blanks
are used 1nstead

of commas to sepa-
rate expressions 1in
the list

you mix semicolons

and commas in the same
LPRINT (or PRINT)
statement

For example:

pRINT llMll',HrJII
M N
Ok

output values are spaced more closely. The exact
spacing depends on the number of digits or
characters in each value. The use of semicolons
in this way allows you to print (or display)
more values on each line.

Having more than one space or semicolon between
expressions has the same effect as one space or
semicolon.

For example:

LIST

19 A1 = 10098
20 A2 = 2009
3¢ A3 = 3040
40 A4 = 4000
5¢ AS = 5@¢¢
6@ A6 = 6000
78 A7 = -7¢08
8@ PRINT A1;A2:A3;A4;;A5 A6 A7
Ok

RUN

1000 2000 3000 4999 SPPP 60QP -7000

The spaces between the numbers appear because
the system adds one space after printing (or
displaying) each number and eliminates the im-
plied plus sign before each positive value

you get a simple method of labelling each of

your results and of gaining wide spaces within a
line.

7-9

For example:

LIST

19 INPUT '"Length and Width'; L,W

28 PRINT "Area =";L*W,"Length =";L,"Width ='W
3¢ GOTO 19

Ok

RUN

Length and Width? 1.2, 3
Area = 3.6 Length = 1.
Length and Width? AC

2 Width = 3

Break in 14

Ok
you use the special you name the precise print (or cursor) position,
built-in function in a line, at which you want your next data item
TAB to begin.

For example:

PRINT 1; TAB(6); 2

1 2

Ok
you use the special you insert a specified number of blanks on the
built-in function line. (In calculating the number of blanks you
SPC want, remember that numeric data is always

output with one blank after it).
For example:
PRINT 1; SPC(6); 2

1 2

Ok

WRITE (PROGRAM/IMMEDIATE)

Displays a list of data. Each item displayed will be separated from the
last by a comma. Strings will be delimited by quotation marks('). After
the last item is displayed, BASIC inserts a carriage return/line feed.

HOW BASIC OUTPUTS DATA

@ expression

Figure 7-5 WRITE Statement

Where

Expression may be a numeric, relational, logical, or string expression.
1f no expression is indicated a blank line is output.

Example

DISPLAY COMMENTS
19 A=8¢ : B=9¢ when a WRITE statement is executed, each item is
2@ CS="THAT'S ALL" separated from the last by a comma, and strings
3¢ WRITE A,B,CS are delimited by quotation marks.
RUN
8@, 90, "THAT'S ALL" Note: Numeric values are displayed using the
Ok same format as the PRINT statement but they are

not followed by blanks

USER DEFINED FORMAT

You have seen that the use of commas, semicolons, quoted strings, and the
SPC and TAB functions provides limited control of the format of displayed
or printed information. Two statements, LPRINT USING and PRINT USING,
provide the capability of generating printed or displayed output with
complete control of the format.

They are usually used in a program, but they can be used as immediate
statements too.

7-11

LPRINT USING/PRINT USING (PROGRAM/IMMEDIATE)
LPRINT USING prints a list of data in a user-defined format.
PRINT USING displays a list of data In a user-defined format,

The expressions appearing in an LPRINT (or PRINT) USING statement must be
Separated by commas (,) or semicolons (;), it makes no difference which
punctuation mark is used. Values will be output (printed or displayed) in
a format specified by the string expression appearing after USING. This
expression is ga string literal or variable that is composed of special
formatting characters. These formatting characters (see below) determine
the fields and the format of the output strings or numbers,

expression |

—-@RINT usw@—-’ string
expression

Figure 7-6 LPRINT USING Statement

string . - ;
PRINT USING expression | H - expression

? USING ’

-e

Figure 7-7 PRINT USING Statement

7 1A

HOW BASIC OUTPUTS DATA

Where

SYNTAX ELEMENT

string expression

expression

To Output Strings

MEANING

is a string of formatting characters (see
below) or a 'string variable consisting of a
string of formatting characters

is a numeric, relational, logical or string
expression which is to be printed or displayed

One of three formatting characters may be used:

FORMATTING CHARACTER

nyn

"\ n spaces \"

MEANING

specifies that only the first character in the
given string is to be output.

For example:

LIST

19 AS="WATCH"

2@ BS="0UuT"

3@ PRINT USING '"!'";A$;BS

Ok

RUN

W0

Ok

specifies that 2+n characters from the string
are to be output. If the backslashes are entered
with no spaces, two characters will be output.
With one space, three characters will be output,
and so on. 1f the string is longer than the
field, the extra characters are ignored. 1f the
field is longer than the string, the string will
be left-justified in the field and padded with
spaces to the right.

7-13

For example:

LIST
19 AS=""LOOK"

28 BS="0UT"

3¢ PRINT USING "\ \";AS$;:BS
49 PRINT USING "\ \';AS$:BS
Ok

RUN

LOOKOUT

LOOK OuT

g specifies a variable length string field. When
the field is specified with "&", the string is
output exactly as input.

Example:

LIST

19 AS="LOOK":BS$="0yT"
20 PRINT USING "HUSAS,
3@ PRINT USING '"&":B$
Ok

RUN

LouT

Ok

To Output Numbers

The following formatting characters may be used:

FORMATTING CHARACTERS MEANING

a number sign is used to represent each digit
position. Digit positions are always filled. If
the number to be output has fewer digits than
positions specified, the number will be right-
Justified (preceded by spaces) in the field.

HOW BASIC OUTPUTS DATA

For example:

PRINT USING "####";99
99
Ok

a decimal point may be inaserted at any position
in the field. 1f the format string specifies
that a digitc is tc precede the decimal point,
the digit will be output only if it is different
from zero. Numbers are rounded when necessary.

For example:

PRINT USING "###.##";.78
.78

Ok

PRINT USING " ###.##";987.654

987.65

0k

PRINT USING "##.## ";1¢.,5.3,66.789,.234
19.09 5,3¢ 66.79 .23

0k

1n the last example, three spaces were inserted
at the end of the format string to separate the
displayed values on the line.

va plus sign at the beginning or end of the

format string will cause the number sign (plus
or minus) to be output before or after the
number.

For exanple:

PRINT USING "+# #.4## "._68.95,2.4,55.6,-.9 &
-68.95 +2.40 +55.60 -.9¢
Ok"

ote: 1f you only want the minus sign (not the
plus sign) to precede the number, you should
start the format string with an extra number
sign (#).

7-15

*%

3%

**5

For example:

PRINT USING "###. ##";:.68.95,68.95
-68.95 68.95

a minus sign at the end of the format field will
cause negative numbers to be output with a

trailing minus sign.

For example:

PRINT USING "##.##- ";-68.95,22.449,—7.{31
68.95- 22.45 7.81-
Ok

a double asterisk at the beginning of the format
string causes leading spaces in the numeric
field to be filled with asterisks. The ** 3]go
specifies positions for two more digits.

For example:

PRINT USING "** # # "312.39,-8.9,765.1
*12.4 *x_ 9 765.1
Ok

a double dollar sign causes a dollar sign to be
output to the immediate left of the formatted
number. The $$ srecifies two more digit posi-
tions, one of which is ‘the dollar sign. The
exponential format (AAAA) cannot be used with
$$. Negative numbers cannot be used unless the
format string ends with a minus or a plus sign,
In the former case negative numbers appear with
the negative sign on the right, in the latter
case both positive and negative numbers appear
with the appropriate sign on the right.

For example:

PRINT USING "$S##4 .44 -";-456.78
$456.78-

Ok

the **$ at the veginning of a format string
comtines the effects of the two symbols describ-
ed above. Leading Spaces will be asterisk-filled

HOW BASIC OUTPUTS DATA

ANNAN

and a dollar sign will be inserted before the
number. **$ specifies three more digit posi-
tions, one of which is the dollar sign.

For example:

PRINT USING "**$##. ##":2.34
***52_34
0k

A comma to the left of the decimal point in a
formatting string causes a comma to be output to
the left of every third digit to the left of the
decimal point. A comma at the end of the format
string is output as part of the string. A comma
specifies another digit position. A comma has no
effect 1f wused with the exponential (AAAA)
format.

For example:

PRINT USING "####,.##":1234.5
1,234.5¢
0k

PRINT USING "####.##,:1234.5
1234.5@,
0k

four carats (or up-arrows) may be placed after
the digit position characters to specify expo-
nential format. The four carats allow space for
E+xx to be output. Any decimal point position
may be specified. The significant digits are
left-juscified, and the exponent 1is adjusted.
Unless a leading + or trailing + or - is
specified, one digit position will be used to
the left of the decimal point to output a space
or a minus sign.

For example:
PRINT USING "##.##AAAA":234.56

2.35E+0@2
Ok

7-17

N

PRINT USING '.####AAAA';888888
.8889E+P6

0k
PRINT USING "+.####AAAA":123 IKH
+.1230€E+03

0k

an underscore in the format string causes the
next character to be output as a literal charac-
ter (i.e. as it appears in the format string)

For example:

PRINT USING " t##.## 1";12.34
112.34!
Ok

The literal character itself may be an under-
score by placing " ' in the format string

if the number to be output 1is larger than the
specified numeric field, a percent sign 1is
output in front of the number. If ‘rounding
causes the number to exceed the field, a percent
sign will be output in front of the rounded
number.

For example:

PRINT USING "##.##";111.22
%111.22
0k

PRINT USING ".##':.999
%1.0d
Ok

If the number of digits specified exceeds 24, an
"lllegal function call" error will result

HOW BASIC OUTPUTS DATA

Remarks

If the same format string is to be used several times in a program, you
may find it convenient to assign the formatting characters to a string
variable and then specify the variable name instead of the format string.
This technique is shown below:

10 AS="H# # A
2@ PRINT USING A$; 8.49

10@ PRINT USING AS;A,B,C

15@ PRINT USING AS$;A1,B1

8. CONTROL STATEMENTS

ABOUT THIS CHAPTER

Normally the statements in a BASIC program are executed sequentially in
the same order as they appear, following the 1line numbers of the
statements. Sometimes, however, it is necessary to 'branch" to some other
part of the program, thus changing the normal seéquence of execution.

Branches and loops are two methods of altering the normal flow of program
execution. In this chapter we shall examine conditional and unconditional
branches as well as loops.

CONTENTS
UNCONDITIONAL BRANCHES 8-1
GOTO (PROGRAM/IMMEDIATE) 8-1

ON...GOTO (PROGRAM/IMMEDIATE) 8-3

CONDITIONAL BRANCHES 8-4
IF...GOTO...ELSE/ 8-4
IF...THEN. . .ELSE

(PROGRAM/ IMMEDIATE)

LOOPS 8-9

FOR/NEXT (PROGRAM/ IMMED TATE) 8-11

WHILE/WEND 8-20
(PROGRAM/ IMMEDIATE)

CONTROL STATEMENTS

UNCONDITIONAL BRANCHES

Branches may be conditional or unconditional. The GOTO statement causes
an unconditional transfer of control. In the statement, you simply
indicate the line number to which control is to be transferred. The
sample program, RECTANGLE1 (see Chapter 1 and 2) contains the following
GOTO statement:

8¢ GOTO 2¢

This statement tells the M20 to execute statement 20 next, rather than
the statement with the next higher line number.

There is one more form of unconditional branching; the ON...GOTO or
computed GOTO statement. This enables you to transfer control to one of
perhaps several statements, depending on the value of a numeric
expression. For example:

199 ON A GOTO 15, 3¢, 500

This statement says; if A=1, go to statement 15, if A=2 go to

statement 3¢, if A=3 go to statement 5¢@ but if A<1 or A>3, BASIC
continues with the next executable statement.

GOTO (PROGRAM/IMMEDIATE)

Transfers control to a specified program line.

line
GOTO number

Figure 8-1 GOTO Statement

Examples

DISPLAY

LIST

19 READ R

20 PRINT "R ='";R,
30 A = 3.14%RA2

40 PRINT "AREA ='":A

5¢ GOTO 1¢
604 DATA 5,7,12
Ok
RUN
R=25 AREA = 78.5
R =17 AREA = 153.8¢6
R=12 AREA = 452.16
Out of data in 1¢
Ok
Characteristics
IF..
you enter

GOTO 5¢@@
when you are in Command Mode
AND
5@ is a statement of your current
program

the statement specified by line
number 1s non executable (e.q.
a REM statement)

COMMENT

statement 5@ transfers control
unconditionally to statement 18

THEN. ..

GOTO is used as an alternative to
RUN.

Note: GOTO 1line number used in
Command Mode causes execution to
begin at the specified line number
without an automatic CLEAR. This
lets you pass values to program
variables while in Command Mode.
This technique may be vused in
debugging your program

control is passed to the first
subsequent executable statement

CONTROL STATEMENTS

a GOTO statement 1s encountered
within a FOR/NEXT loop

AND
transfers control outside the loop

the value of the control variable
(see FOR/NEXT below) is the last
value assumed within the loop

ON...GOTO (PROGRAM/IMMEDIATE)

Transfers control to one of several specified lines, according to the

value of a specified expression.

expression

Figure 8-2 ON...GOTO Statement

Characteristics

1F...

you have a program so structured:

2¢ INPUT A
3g ON A GOTO 19¢,208,3089
49
A=1
L’qﬂ

199

=2

—» 200

-+3¢9

 line
number
besn—

GOTO

THEN. ..

the value of A determines which
line number 1in the list will be
used for branching. For example, if
the value is 3, the third line
number in the list will be the
destination of the branch. (1f the
value o A is a non-integer, the
fractional portion is rounded)

the value of the expression after BASIC continues with the next
ON is zero or greater than the executable statement

number of items in the list (but

less than or equal to 255)

the value of the expression after an '"lIllegal function call" error
ON is negative or greater than occurs
255

CONDITIONAL BRANCHES

In many situations you will want to branch to different portions of a
program depending on conditions that arise within it. To test these
conditions and make a decision as to what to do next, you can use an
IF...GOTO...ELSE, or an IF..THEN...ELSE statement.

IF...60TO...ELSE/IF...THEN.. .ELSE (PROGRAM/IMMEDIATE)

Both these statements transfer control, conditionally, to a specified
statement.

IF...THEN...ELSE is more powerful (as you can see by the syntax); it
allows a series of statements to be entered both after THEN and ELSE.

N line line
_—.®-_ﬁ condition GOTO number | ELsE [number

statement

Figure 8-3 1IF...GOTO...ELSE Statement

CONTROL STATEMENTS

—@—4 | condition

ling | line
| number ELSE

’ THEN number

statement staternent

Figure 8-4 1F...THEN...ELSE Statement

Where

SYNTAX ELEMENT

condition

MEANING
may be:
- a numeric expression
- a relational expression
- a logical expression.

Note: BASIC determines whether the condition is
true or false by testing the resui: of the
expression for non zero and zero respectively. A
non zero result is true and a zero result is
false. Because of this, you can test whether the
value of a variable is non zero or zero by
merely specifying the name of the variable as
"condition'.

A comma is allowed before THEN

Characteristics

IF...

the condition is true

the condition is false
AND IF

the ELSE clause is

omitted

the condition is false
AND IF

the ELSE clause is
present

Examples

DISPLAY

LIST

18 REM IF GOTO test program

20 INPUT X%
3¢ IF X%>=1¢ GOTO 6¢

49 PRINT "IF GOTO failed ‘he test"

5¢ GOTO 99

THEN. ..

control is
EITHER
passed to the statement whose
specified after GOTO (or THEN)
OR
to the first statement specified after THEN

line number is

control is passed to the next executable state-
ment following the IF...GOTO or IF...THEN state-
ment

control 1is

EITHER
passed to the statement whose
specified after ELSE

line number is

OR
to the first statement specified after ELSE.

Note: After executing the statement(s) following
ELSE, control 1is passed to the next executable
statement

COMMENTS

if you enter 19 the condition
(X%>=18) in statement 3¢ is true
and control is transferred to
statement 60. If you enter 2 the
condition is false and control is
transferred to statement 4¢

6@ PRINT "IF GOTO passed the test'

99 GOTO 2¢
Ok

RUN

2 14

IF GOTO passed the test

CONTROL STATEMENTS

? 2

IF GOTO failed the test
? AC

Break in 2¢

Ok

LIST
18 INPUT X
20 1F X=INT(X)
THEN PRINT X; "is an integer"
ELSE PRINT X; "is not an integer"
3@ 1IF X=9999 THEN END ELSE 1g
Ok

RUN
? 1
1 is an integer
?71.5
1.5 is not an integer
? AC
Break in 19
Ok

50 1F 1 THEN A=19@¢

70 1F (1<3@) AND (1>5) THEN
A=B+C:GOTO 35¢
8@ PRINT "OUT OF RANGE"

Nesting of IF Statements

1f you enter 1, the condition
(X=INT(X)) in statement 20 is true
and control is transferred to the
PRINT statement after THEN. 1f you
enter 1.5 the condition is false
and control is transferred to the
PRINT statement after ELSE

Note: Statement 2¢ is one logical

line divided into three physical
lines.

the value 10@8 is assigned to
variable A if 1 is not zero

a test determines if 1 is greater
than 5 and less than 3@. If 1 is
in this range, A is calculated and
execution branches to line 35¢. If
I is not in this range execution
continues with line 8¢

IF...GOTO...ELSE or IF...THEN...ELSE statements may be nested. Nesting is

limited only by the length of the line.

IF...

you enter:

IF X>Y THEN PRINT "GREATER"

ELSE IF Y>X THEN PRINT "LESS THAN"
ELSE PRINT "EQUAL"

For example:

THEN. ..

you have entered a legal statement
(it is one
into three physical lines)

logical line divided

the statement does not contain the
same number of ELSE and THEN
clauses

To Test Equality for a Floating Point

IF...

you use an IF...GOTO...ELSE or an
IF...THEN...ELSE statement to test
equality for a value that is the
result of a floating point
computation

each ELSE is matched with the most
recent unmatched THEN. For example:

100 1F A=B THEN IF B=C THEN
PRINT "A=C"

ELSE PRINT "A< >C"
118. ..

Will display A=C when A=B and
B=C; will display A< >C when A=B
but B is different from C. If A is
different from B control is trans-
ferred to the statement 114.

Value

THEN. ..

the test should be against the
range over which the accuracy of

~ the value may vary (as the interval

representation of the value may not
be exact).

For example, to test a computed
variable A against the value 1.
use:

IF ABS(A-1.8) 1.gE-6 GOTO...
or
IF ABS(A-1.8) 1.0E-6 THEN...

This test returns true if the value

of A is 1. with a relative error
of less than 1.¢E-6

DACT/ « ANMICLIACT [nladiad ol ol off ¥YoN oV N I BN J

CONTROL STATEMENTS

LOOPS

Repeatedly executing a series of statements is known as looping.
You may create loops by:

- the FOR and NEXT statements; they are used to enclose a series of

statements, enabling you to repeat those statements a specified number
of times

- the WHILE and WEND statements; they are used to enclose a series of

statements, enabling you to repeat those statements as long as a given
condition is true.

How a Loop can Simplify Your Task

Suppose you wanted to display a listing of each number from 1 to 25, to-
gether with its square root.

You could do it, using the following statements, but this is a very
primitive solution to the problem:

1@ PRINT 1,SQR(1)
2@ PRINT 2,5QR(2)
3¢ PRINT 3,SQR(3)

and so on, ending with:

240 PRINT 24,S5QR(24)
25@ PRINT 25,SQR(25)
26@ END

using an IF...THEN statement instead would be far more efficient:

19 LET A=1

20 PRINT A,SQR(A)
30 LET A=A+

49 1F A<26 THEN 2¢
5@ END

A further simplification would be to use a FOR/NEXT loop:

18 FOR A=1 TO 25
2@ PRINT A,SQR(A)
3@ NEXT A

4@ END

At the moment, this simplification may not seem very dramatic, but the
uses to which you can put a FOR/NEXT loop are surprising. We will now
explore some of these possibilities.

Starting the Loop - the FOR Statement

The FOR statement 1identifies the start of a loop; the NEXT statement
identifies the end of one. FOR specifies how many times the loop (i.e.
the statement or sequence of statements between the FOR and the NEXT
statement) is to be executed.

In the preceding example, FOR specifies that the PRINT statement is to be
executed for successive values of A from 1 through 25 (an increment of 1
is added to A for each execution of PRINT). When the value of A exceeds
25, execution of the loop stops, and control is passed to the statement
following the NEXT statement. In this case, the statement that follows is
END, denoting the end of the program.

The specification A=1 T0 25 defines the set of values over which the loop
will be executed. In this context, A 1is called a control variable;
controlling the number of times the loop is to be executed. The control
variable will always increase by 1 if the FOR statement contains no
instructions to the contrary. You can, however, increment the control
variable by some value other than 1 if you want to. This 1is done by
adding a STEP clause, for example:

10 FOR A=1 TO 25 STEP 2

This statement indicates an increment (or step) of 2. Thus, the loop will
be executed once for every odd value of A from 1 to 25 (that is,
1,3,5,...25). When the value of A exceeds 25 (when it reaches 27), exe-
cution of the loop will end. The value of A will be 27 before the
statement that follows the NEXT statement is executed.

1f you wanted to execute the loop once for every even value of A from 1
to 25, you could specify:

1@ FOR A=2 TO 25 STEP 2

Again, when the value of A exceeds 25 (when it reaches 26), execution of
the loop will end.

You could explicitly specify a step value of 1, as in the example below:

8¢ FOR X=1 TO 4@ STEP 1

CONTROL STATEMENTS

but it is unnecessary.

As with the expressions in LET and PRINT statements, specifications 1in
FOR statements can be quite complicated. For example, all of the
following FOR statements are valid:

7% FOR A=B TO C
8@ FOR X=8/M+N TO AA2
5¢ FOR 1=SQR(A) TO 155@ STEP B*C+6

If the value of an increment is negative, the FOR/NEXT loop is executed
until the value of control variable is less than the final value (i.e.
the value expressed after T0).

For example:

LIST
1@ FOR K%=1 70 -1¢ STEP -1
20 PRINT K%;
3@ NEXT K%
Ok
RUN
1 @ -1-2-3-4-526-7-8-9-1¢

With this example the loop is repeated 12 times.

Closing the Loop - the NEXT Statement

Just as the loop always begins with a FOR statement, i% always ends with
a NEXT statement. Remember that the loop comprises all the statements
included between the FOR and NEXT statements.

The NEXT statement consists of the keyworc NEXT, optionally followed by a
list of control variables. Each control variable must be the same as the
control variable that appears in the corresponding FOR statement. More

than one FOR statement may be associated with only one NEXT statement
(see Nested Loops below).

FOR/NEXT (PROGRAM/IMMEDIATE)

FOR and NEXT statements allow a series of statements to be performed in
loop a given number of times.

| control

variable

| initial m | final
value value

Figure 8-5 FOR Statement

control
variable

Figure 8-6 NEXT Statement

Where

SYNTAX ELEMENT

control variable

MEANING

is a simple numeric
variable (defined as

an integer or a single-
precision variable).
The name of the con-
trol variable speci-
fied in the NEXT state-
ment must be the same
as that specified in
the FOR statement but
the NEXT statement may
specify a list of con-
trol variables (see
Nested Loops below)

or even none

| \ncrement | l

STEP

DEFAULT VALUES

if a NEXT statement
specifies no control
variable the NEXT
statement will match
the most recent FOR
statement

CONTROL STATEMENTS

initial value

final value

increment

1s a numeric expres-
sion specifying “he
first value assigned
to the control vari-
able when the FOR
statement is executed

1s a numeric expres-
sion specifying the
limit of the control
variable. This value
is compared with the
control variable each
time the loop is about
to be repeated

is a numeric expres-
sion specifying the
value to be added (with
its algebraic sign) to
the control variable
when the NEXT state-
ment is encountered

if the STEP option is
not specified an incre-
ment of +1 is assumed

8-13

How FOR/NEXT Statements Work

.) ... the initial value Increment >
Entry ——g] ;;gozgtzr:d +{ is assigned to 9 '< 1 >
T control variable . . .
Increment < @ A@
Increment =@ ()
+{ 3
.. . it control variable} ypg | ... statements ér'\c'o:'::er:egEﬁ;rn:ol
‘f. | < '= > RIGE“;(V%P” FOR antid variable is increased \
inal value are execu by increment

NO] the first statement
after NEXT is p———bE xit
executed

. . when NEXT is
... if controf variable} YEgS | statements between encountered, control
= *| FOR and NEXT “] variable is decreased \
final value : are executed by increment
NOJ the first statement
after NEXT is ——bExit
executed
\. J

the loop is
@—d executed
indefinitely ()

(*) Unless the initial and final value are equal. Tn this case the first
statement after next is executed

Figure 8-7 FOR/NEXT Statements

CONTROL STATEMENTS

Remarks

We shall say that a FOR/NEXT loop is "pending" if it has not yet been
completed when a break is encountered. Any modification to the resident
program (deleting, editing lines, and so on) will prohibit the loop from
resuming execution,

Value of Increment Positive

IF... THEN. ..

the value of increment is positive the FOR/NEXT loop 1is executed
until the value of the control
variable is not greater than the
final value.

For example:

LIST

19 K =1¢

20 FOR 1=1 TO 1¢ STEP 2
3¢ PRINT 1;

40 K=K+1¢

5¢ PRINT K

60 NEXT

Ok

RUN

20
30
49
5¢
6@

O N DW=

Ok
Here the loop executes five times

the value of increment is positive the loop does not execute.
AND 1F

the initial value exceeds the final

value

Value of Increment Negative

IF...

the value of increment is negative

For example:

LIST

19 J=p

28 FOR 1=1 T0 J

3@ PRINT 1

4@ NEXT 1

58 PRINT "Exit of the loop"
Ok

RUN

Exit of the loop

Ok

THEN. ..

the FOR/NEXT loop is executed until
the value of the control variable
is less than the final value.

For example:

LIST
18 FOR 1%=1 TO -1¢ STEP -3
28 PRINT 1%;
3@ NEXT 1%
47 PRINT
5¢ PRINT "Exit ':
"CONTROL VARIABLE=":1%
Ok
RUN

1-2-5-8
Exit CONTROL VARIABLE=-11

Here the loop executes four times.
When it is exited, control variable
maintains 1its last value (-11),
which is displayed by statement 5@

CONTROL STATEMENTS

the value of increment is negative
AND 1F

initial value is less than final

value

Value of Increment Zero

IF...

the value of the increment is zero

Nested Loops

the loop does not execute.
For example:

LIST

19 FOR K%=1 TO 1¢ STEP -2

208 PRINT K%;

30 NEXT K%

4@ PRINT “Exit '";
"CONTROL VARIABLE='"';K%

Ok

RUN

Exit CONTROL VARIABLE=1

Ok

THEN. ..

the loop is executed indefinitely
(unless the initial and final
values are equal; in this case the
loop will not be executed at all).

For example:

LIST

19@ FOR A%=1 TO 3¢ STEP ¢
118 PRINT A%;

120 NEXT A%

Ok

RUN

11 1.,
You have to press LI to

interrupt execution

FOR/NEXT loops may be nested one within the other as long as the internal
FOR/NEXT loop is entirely within the outer FOR/NEXT loop. For example,

the following nesting is valid:

50 FOR 1 = 1 TO 1¢
[:1¢¢ FOR J = 2 10 20
208 NEXT J
300 NEXT 1
while the following is not:
5 FOR 1 = 1 T0 1¢
l 188 FOR J = 2 TO 2¢
=
158 NEXT 1
209 nexr ;
Nested FOR/NEXT loops cannot use the same control variable,

Each FOR statement specified must have a corresponding NEXT Statement,

If nested loops have the Same end point, 4 single NEXT statement may be
used for all of them (with a list of control variables),

When a nestegq loop is encountered it ig éxecuted, when it is exlited the
first statement following the associated NEXT statement will be executed.

Loops may be nested to any depth,

of memory available,
For example:

S5 FOR I =1 79 14
198 FOR J = 2 T0 29
200 NEXT 7,1

Nested loops provide 4 very usefyl Programming technique for solving a
wide range of problems. An example of a nested loop 1g shown beloy,

CONTROL STATEMENTS

Example

DISPLAY

LIST

13 REM PRIME NUMBERS

2@ INPUT "Enter limits N,M";N,M
3@ PRINT "Primes from";N;"T0'":M
4@ PRINT

5@ PRINT

6@ FOR I=N TO M

70 LET K=SQR(1)

834 FOR J=2 TO K

99 LET E=1/J-INT(1/1)
198 1F E=@ THEN 13¢

1@ NEXT J

128 PRINT 1;

130 NEXT 1

140 PRINT

15@ PRINT

160 PRINT "End of List"
17@ END

Ok

RUN

Enter limits N,M? 1,15
Primes from 1 TO 15

12 3 5 7 11 13

End of List
Ok

Remarks

COMMENTS

you will display all the prime
numbers within a given range of
numbers. One FOR/NEXT loop speci-
fies the range of the numbers to be
used. Nested within that loop is a
second loop, one that contains an
algorithm to determine if any
number in the specified range is a
prime number.

To explain the algorithm: numbers
assigned to a variable (1) are
divided by an integer (J) whose
value ranges from 2 to the square
root of 1. If the remainder of the
division is @ then 1 is not a prime
number, so the number I+1 is
generated and the process repeated.
The choice of the final value
square root 1s made because if
there are any integer factors of
the number 1 they will always lie
between 2 and the square root of 1

Note: Statement 18@ allows you to
exit the inner loop even if J is
not greater than K. You can always
exit a loop by an 1F...THEN or GOTO
statement, however you cannot enter
the loop 1in any statement other
than the initial FOR

- if a NEXT statement is encountered before its corresponding FOR state-

ment, a

NEXT without FOR

error message 1s issued and execution is terminated.

For example:

1208 1F A>5 THEN 2919

2089 FOR J=1 TO 7
281@ PRINT "HELLO";
2028 NEXT J

When executing statement 2@2@ following a jump from 12¢@, BASIC

displays the above mentioned error message and enters Command Mode
- the final value is always set before the initial value is set.
For example, if you write:

19 1=5
2@ FOR 1=1 TO I+5

statement 2@ will assign the value 1§ to the final value. However, for
program readability, we do not advise you to use the control variable
to define the final value

- if possible use an integer variable for the control variable and

integer constants (or integer variables) for the initial and final
value and the increment. This will improve the speed of execution.

WHILE/WEND (PROGRAM/IMMEDIATE)

Executes a series of statements in a loop as long as a given condition is

true.

conditionf—*

Figure 8-8 WHILE Statement

pacTe | ANGHAGF - REFERENCE GULQEA

CONTROL STATEMENTS

Figure 8-9 WEND Statement
Where

SYNTAX ELEMENT MEANING
condition may be:
- @ numeric expression
- @ relational expression
- a logical expression

Note: BASIC determines whether the condition is
true or false by testing the result of the
expression for non zero and zero respectively. A
non zero result is true and a zero result is
false.

Because of this, you can test whether the value
of a variable is non zero or zero by merely
specifying the name of the variable as a
condition

How WHILE/WEND Statements Work

If a WHILE ... and the - .. control is passed

. tion R i

the sequence of

- and the statements from
condition s WHILE and WEND
true . .. is executed

Figure 8-1¢ WHILE/WEND Statements

Remarks

We shall say that a WHILE/WEND loop is "pending" if it has not yet been
completed when a break is éncountered. Any modification to the resident
program (deleting or editing lines, and so on...) will prohibit the
loop from resuming execution.

Example
DISPLAY COMMENT

LIST you sort the elements of array
99 'BUBBLE SORT ARRAY A$ AS in ascending value order
198 FLIPS=1 'FORCE ONE PASS THRU LOOP (from subscript 1 to subscript
119 WHILE FLIPS J)
115 FLIPS=g
128 FOR 1=1 TO J-1 Note: the condition (in this
130 IF AS(1)>AS$(1+1) THEN case the value of variable

SWAP AS(1),A$(1+1):FLIPS=1 FLIPS) may be changed during the
1408 NEXT 1 loop (see line 13g)
158 WEND
Ok
RUN

Ok

CONTROL STATEMENTS

Remarks

WHILE/WEND loops may be nested to any level. Each WEND
most recent WHILE. An unmatched WHILE statement causes a

WEND'" error, and an unmatched WEND

WHILE" error.

statement causes a

You can exit a WHILE/WEND loop either when the condition

false or by an IF...THEN or GOTO statement, but you cannot

In any statement other than the initial WHILE.

will match the
"WHILE without
"WEND without

after WHILE is
enter the loop

=712

9. FUNCTIONS

ABOUT THIS CHAPTER
— 12 LRAFTER

This chapter describes the intrinsic (built-in) functions, which may be
called by any program withoyt further definition ang user-defined
functions which once set up can be used in exactly the same way but only
within the Program containing the definition.

CONTENTS
INTRODUCT 10N 9-1 RND 9-14
USER DEFINED FUNCTIONS 9-2 RANDOMIZE 9-15
= (PROGRAM/IMMEDIATE)
DEF FN (PROGRAM) 9-3

SGN 9-16
BULLT-IN NUMERIC FUNCTIONS 9-5

SIN 9-17
ABS 9-6

SQR 9-17
ATN 9-6

TAN 9-18
CDBL 9-7

BUILT-IN STRING FUNCTIONS 9-19
CINT 9-8 T

ASC 9-19
cos 9-8

CHRS 9-20
CSNG 9-9

HEXS 9-21
EXP 9-10

INKEYS 9-22
FIX 9-10

INPUTS 9-23
FRE 9-11

INSTR 9-24
INT 9-12

LEFTS 9-25
LOG 9-13

LEN
MID$

MID$ (PROGRAM/IMMEDIATE)
0CT$

RIGHTS

SPACES

STRS

STRINGS

VAL

INPUT/QUTPUT AND SPECIAL

BUILT-IN FUNCTIONS

DATES/TIMES
@h)
Cvl
CVs
EOF
ERL
ERR
Loc
LPOS
MKD$
MK1$
MKS$

SPC

9-26

9-27

9-28

9-30

9-31

9-32

9-33

9-34

9-35

9-36

9-38

9-38

9-38

9-38

9-39

9-36

9-39

9-40

9-40

9-40

TAB

VARPTR

9-41

9-42

FUNCTIONS

INTRODUCTION

There are occasions when identical expressions are required a number of
times in the same program.

To avoid writing these expressions more than once and to save storage,
functions can be written and then activated from many places in a BASIC
program.

Each function can be called simply by stating its name followed, in
parentheses, by one or more "arguments" representing the values the
function parameters are to assume. Each argument is associated with a
parameter in the function definition.

Arguments are separated by commas. An argument m3y be a constant, a
variable, or an expression.

Parameters are separated by commas too. A parameter may only be a
variable.

The number of arguments must be the same as the number of parameters in
the function definition and their types (numeric or string) must match.
The association between arguments and parameters is positional, i.e. the
first argument will be associated with the first parameter etc.... We can
pass one or several arguments to a function, or no argument at all.

Numeric conversions are valid from one numeric arqument to the corre-
sponding parameter, if it is a different numeric type. 1f for instance, a
floating point value is supplied where an integer is required, BASIC will
round the fractional portion and use the resulting integer.

A function returns a single value, which may be a numeric or a string
value, depending on the type of the expression used to define the
function,

We can classify BASIC functions into two main categories:

- Intrinsic (or built-in) functions
Built-in functions are an intrinsic part of BASIC. They provide a set
of commonly used numeric and string operations. The user can invoke
them without an explicit definition within any program. A complete list
and a detailed description of built-in functions will be given below.

- User defined functions
The user can define an arbitrary number of functions in a BASIC

program, by the statement DEF FN. The name of a user defined function
begins with FN and may be any valid variable name.

Each function definition must precede any function call in the program.

Examples

DISPLAY

18 A=X*SIN(X)+LOG(X)

LIST

1@ DEF FNH(X,Y)=SQR(X*X+Y*Y)

28 INPUT "SIDES'";X1,Y1

3@ PRINT "H='"'";FNH(X1,Y1);
"OXT="XT Y=Y

4¢ GOTO 29

Ok

RUN

SIDES? 3.5,1.2

H= 3.7 X1= 3.5 Y1= 1.2

SIDES? 1.7,4

H= 4.34626 X1=1.7 Y1= 4

SIDES? AC

Break in 20

Ok

Remarks

COMMENTS

here SIN and LOG are built-in
numeric functions

FNH 1is a user-defined function. A
DEF FN statement defines it (see
statement 18). It calculates the
square root of the sum of the
squares of the parameters X and Y
(by wusing the built-in function
SQR).

Statement 3@ calls the user-defined
function and passes two arguments
to the corresponding parameters.

Note: The names of the arguments
need not be the same as the names
of the corresponding parameters

Functions may be wused in both 1immediate and program lines. This
information is not specified each time a function is introduced.

USER DEFINED FUNCTIONS

If a numeric or string equation is to be used several times, it is more
convenient to define the equation as a function. Once defined, the func-
tion can be called in exactly the same way as a built-in function. The
only limitation 1is that the definition is program dependent and must
therefore be redefined in each program that needs to use it (unless the
second program is CHAINed to the first, with the MERGE option).

FUNCTIONS

DEF FN defines a numeric or string function.

A DEF FN statement must be executed before

called.

A DEF FN statment is not permitted in immediate mode.

DEF FN

function
name

Figure 9-1 DEF FN Stat

——

ement

name

Figure 9-2 Funrtion Call

Where

SYNTAX ELEMENT

FUNCTLON nume

parameter {

DEF FN (PROGRAM)

the function it defines can be

| expression |

argument

MEANING

a legal variable name beginning wit! *N {numeric
or string names may be specified). :.'» hlanks may
be inserted between 7N and the remainder of the
name and the first character after FN must oe a

letter.

If a type is specified in the function name, the
value of the expression 1s forced to that type
before it is returned to *he calling statement

parameter a 'dummy' variable that is to be replaced by the
corresponding argument value when the function
is called. The association between arguments and
parameters is positional (i.e. the first arqu-
ment is associated to the first parameter etc.)

argument the actual value to be Passed to the corresnsond-
ing parameter. Each argument may be a conscant,
a variable, or an expression

expression an expression that performs the operation of the
function,

The type of expression must agree with the type
(numeric or string) of the function.

The expression normally includes only parameters
as variables, but i+ may also include progran
variables defined outside the function defini-
tion (global variables).

Parameter names that appear in the expression
serve only to define the function, they do not
affect program variables that have the same
name. However, for Program readability, we do
not advise you to use the same names

Characteristics
IF. .. THEN. ..
an argument type does a "Type mismatch' error occurs

not agree with the
corresponding para-
meter type

a user-defined func- an "Undefined user function' error occurs
tion is called before
it has been defineuy

FUNCTIONS

a.user-defined func- the called function must be defined in the same
tion is called by an- program and preceed the call.

other user-defined

function For example:

1@ DEF FNA(X)=(SIN(X/5)*3.1)/180
2@ DEF FNB(X)=(FNA(X)+SIN(X))*.5

a program CHAINs an- function definitions must be placed in the
othgr program with the CHAINing program before the CHAIN statement.
option MERGE Otherwise, the user-defined functions will be

undefined when the merge is complete. (For more
details see Chapter 11).

For example:

1@ DEF FNA(X)=(X+X*(X+1))

1¢@ CHAIN MERGE ''V1:PROG1"

Remark

The syntax of the Function Call is valid both for user-cefined and
built-in functions.

BUILT-IN NUMERIC FUNCTIONS

BAS1C provides a number of pre-written routines, that save you the effort
of writing groups of statements to calculate such mathematical functions
as square root, sine and natural logarithm. With the exception of CDBL,
which returns a double precision result, only integer and single
precision results are returned by built-in numeric functions.

A1l the built-in numeric functions are listed in alphabetical order,
below.

Note: 1In this list we also include the RANDOM1ZE statement, as it 1is
closely related to the RND function.

9-5

ABS

Returns the absolute value of a numeric expression.

numeric
@ e expression

Figure 9-3 ABS Function

Example

PRINT ABS(7%(-5))
35

Ok

ATN

Returns the arctangent of the arqument.

The value returned is expressed in radians and falls in the range - /2
to /2 (where & is 3.1415...).

| numeric |
expression

Figure 9-4 ATN Function

FUNCTIONS

Example

19 INPUT X
20 PRINT ATN(X)
Ok
RUN
7?3
1.24985
Ok

Remark

The evaluation of ATN is performed in single precision.

CDBL

CDBL converts any numeric type to a double precision (8 bytes) argument,

| numeric
CDBL (expression)

Figure 9-5 CDBL Function

Example

19 A = 454.67

2@ PRINT A;CDBL(A)

RUN

454.67 454.6709813427734
Ok

CINT

Converts any numeric type argument to an integer by rounding the frac-
tional part (if the fraction is > = .5 the integer part is rounded up,
otherwise a truncation occurs).

numeric)
CINT (expression |

Figure 9-6 CINT Function

Example

PRINT CINT(45.67)
46

Ok

Remarks

If the argument is a value outside the range -32768 and 32767, an
"Overflow'" error occurs,

See also FIX and INT, which also return integer values.

Cos

Returns the cosine of the argument.

| numeric
Ccos (expression)

Figure 9-7 C0S Function

FUNCTIONS

Example

19 X = 2*C0S(.4)
28 PRINT X

RUN

1.84212
Ok

Remarks

The argument passed to 'he function is assumed to be the value of an
angle measured in radians.

The evaluation of COS is performed in single precision.

cshe

Converts any numeric type argument to a single precision number (4
bytes).

numeric
CSNG (| expression —’Q—»

Figure 9-8 CSNG Function

Example

19 A# = 975.3421#

2@ PRINT A#; CSNG(A#)
RUN

975.3421 975.342

0K

Remarks

See also CINT and CDBL functions for converting numbers to the integer
and double precision data types.

"N~

EXP

Raises the constant "e' (e = 2.71828) to the power of the argument.

numeric (:)
EXP (expression

Figure 9-9 EXP Function

Example

19X =5

2@ PRINT EXP(X-1)
RUN

54.5981
Ok

Remarks
The argument value must be < =88.7228. Otherwise the overflow error
message 1is displayed, machine infinity with the appropriate sign is

supplied as the result and execution continues.

The evaluation of EXP is performed in single precision.

F1X

Returns the integer part of the argument (truncation).

numeric
| expression |

Figure 9-10 FIX Function

FUNCTIONS

Examples

PRINT F1X(58.75)
58
Ok

PRINT FIX(-58.75)
-58
Ok

Remarks
FIX(X) 1is equivalent to SGN(X)*INT(ABS(X)). Unlike INT, FIX does not

return the next lower number for negative arguments (see the second
example above).

FRE

Returns the number of bytes in memory not being used by BASIC.
—CED)—O—{ Zmr O—
argument
Figure 9-11 FRE Function
Where
SYNTAX ELEMENT MEANING
dummy argument 1s any numeric or string expression. The value
returned is not affected by the argument value

Examples

PRINT FRE(g)
14542
Ok

PRINT FRE(X$)
14542
Ok

Remarks

FRE('"") forces a garbage collection before returning the number of free
bytes. Moreover, BASIC will perform a garbage collection if all memory

has been used up.
INT

Returns the largest integer less than or equal to the argument.

| numeric
INT (expression)

Figure 9-12 INT Function

Examples

PRINT INT(99.89)
99
Ok

PRINT INT(-12.11)

-13
Ok

Remarks

FUNCTIONS

LOG
Returns the natural logarithm of a positive argument.
numeric
expression
Figura 9-13 LOG Function
Where
SYNTAX ELEMENT MEANING
numeric expression must be positive. Otherwise an "Illegal function
call" error occurs
Example
PRINT LOG(45/7)
1.86@75
Ok
Remarks
log «x
Since logax = Toq 2 the common logarithm (or any other base) can easily
1
e

be evaluated by use of the LOG function.

Lf you need this function frequently in a program, it should be specified
as a user-defined function.

For example, you may write at the beginning of your program:
19 DEF FNLOG1@(X)=LOG(X)/LOG(1¢)

and call FNLOG1d, passing the corresponding argument, anywhere you need.

The evaluation of LOG is performed in single precision.

RND

Returns a random number between g and 1. The same sequence of random
numbers is generated each time the program is RUN, unless the random
number generator is reseeded (see RANDOMIZE statement).

numeric
'. '. ™1 expression '(:) g

Figure 9-14 RND Function

Where
SYNTAX ELEMENT MEANING
numeric expression <@ restarts the same random number sequence
=@ repeats the last number generated
>@ (or omitted, i.e. RND) the next random number
in the sequence is generated
Example

19 FOR 1=1 T0 5
2@ PRINT INT(RND*104) ;
3¢ NEXT
RUN
8 25 77 68 7
Ok

Remarks

Although it is called Random, the number is actually taken from a fixeg
cycle of numbers, about one million in all. Since the cycle starts for
each run, the same Program gives the same result every time it is run. 1€
all the numbers are used. the cycle begins again.

FUNCTIONS

To change the random nuriyer sSequence every time the program is RUN, place
a RANDOMIZE statement at the beginning of the Program and change the
argument with each RUN (see RANDOMIZE),

RANDOM1ZE (PROGRAM/IMMEDIATE)

Reseeds the random number generator,

RANDOMIZE | numeric 1»

expression

Figure 9-15 RANDOMIZE Statement

Where
SYNTAX ELEMENT MEANING

numeric expression must be in the range of integers (-32768 to
32767). 1f it is not an integer it is rounded to
the nearest integer. This number is used to set
the starting point (seed) of a new random number
sequence. If it is omitted, BASIC suspends
Program execution and asks for g3 value by
displaying:
Random Number Seed (-32768 to 32767)?
before executing RANDOMIZE

Remarks

If the random numoer generator 1s not reseeded, the RMD function returns
the same sequence of random numbers each time the program 1is RUN. To
change the sequence of random numbers every time the program is RUN,
place a RANDOMIZE statement at the beginning of the program and change
the argument with each RUN.

You are not limited to random numbers between { and 1. To generate the
sequence between A and B, use the formula:

FIX((B+1-A)*RND+A)

Examples

1@ RANDOMIZE

28 FOR 1=1 T0 §

39 PRINT RND;

49 NEXT 1

RUN

Random Number Seed (-32768 T0Q 32767)? 3 (user enters 3 [CR)]
.88598 .484668 .586328 119426 .7¢9225

0K

RUN

Random Number Seed (-32768 to 32767)? 4 (user enters 4 | CR)]

.803506 .162462 .929364 292443 .322921

Ok

RUN

Random Number Seed (-32768 to 32767)7 3 (same sequence as first RUN)
.88598 .484668 .586328 .11942¢ . 789225

Ok

SGN

Returns 1 if the argument is positive, @ if the argument is zero and -1
if the argument is negative.

| numeric)
expression

Figure 9-16 SgN Function

Example

ON SGN{X)+2 GOTO 100,200,399

FUNCTIONS

branches to:
- 190 if X< ¢
- 200 if X = ¢

- 300 if X>¢g
SIN

Returns the sine of the argument,

o | numeric)
expression

Figure 9-17 SIN Function

Example

PRINT SIN(1.5)
. 997495

Ok

Remarks

The argument passed to the function is assumed to be the value of an
angle measured in radians,

SIN is evaluated as single precision,

SQR

Returns the Square root of the arqument,

| numeric .(:) >
SQR (expression

Figure 9-18 SQR Function

Example

19 FOR X = 18 TO 25 STEP 5
20 PRINT X, SQR(X)

30 NEXT

RUN

19 3.16228
15 3.87298
20 4.47214
25 5

Ok

Remarks

An "lllegal function call" error results if the argument is negative,

5QR is evaluated in single precision.

TAN

Returns the tangent to the argument.

| numeric |
TAN (expression)

Figure 9-19 TAN Function

Example

19 Y = Q*TAN(X)/2

FUNCTIONS

Remarks

The value of the argument is assumed to be measured in radians.

1f TAN overflows, an "Overflow" error message is displayed, machine
infinity with the appropriate sign is supplied as the result and execu-

tion continues.

TAN 1is evaluated in single precision.

BUILT-IN STRING FUNCTIONS

They are intrinsic functions which return a string or numeric value and
permit one or more than one numeric and/or string arguments.

They simplify such string operations as extracting group of characters- a
substring-from a larger string.

All the built-in string functions are listed in alphabetical order,
below.

Note: In this list we also include the MID$ statement, as it is closely
related to the MID$ function.

ASC

Returns a numerical value that is the ASCII code of the first character
of a given string.

| string
@ expression

Figure 9-20 ASC Function

9-19

Example

19 X$ = "TEsT"
2@ PRINT ASC(X$)
RUN

84
Ok

Remarks

If the string expression argument is the nul} string ("), an "Illegal
function call" error occurs,

See the CHR$ function for ASCII-to-string conversion,

CHRS

numeric
CHR$ (‘ expression)
Figure 9-21 CHRS Function
Where
SYNTAX ELEMENT MEANING

numeric expression 1s evaluated and rounded to the nearest integer.
It is interpreted as an ASCII code and must bpe
in the range § to 255, Otherwise an "Illegal
function cal]" eérror occurs

Example

PRINT CHRS (66)
B

Ok

FUNCTIONS

Remarks

CHRS 1is commonly used to send a special character to the terminal.
instance, the character could be sent (CHRS (7))
message, or a form feed could be sent (CHRS(12)
and return the cursor to the home position.

For
as 3 preface to an error
) to clear a CRT screen

See the ASC function for ASClI-to-numeric conversion,

HEXS
Converts a decimal number to the corresponding hexadecimal string.
Numeric
expression)
Figure 9-22 HEXS Function
Where
SYNTAX ELEMENT MEANING
numeric expression 1s rounded to the nearest Integer before HEXS is
evaluated
Example
19 INPUT X

20 AS = HEXS$(X)
3¢ PRINT X "DECIMAL IS " AS "' HEXADECIMAL"
RUN
? 32
32 DECIMAL 1S 2¢ HEXADECIMAL
Ok

Remark

See the 0CT$ function for octal conversion.

Figure 9-23 INKEY$ Function

Examples

DISPLAY COMMENTS
1908 'Timed Input Subroutine This subroutine returns two
1019 RESPONSES$=""' values:
1928 FOR 1%=1 TO TIMELIMITS
1938 AS=INKEYS:IF LEN(AS)=8 THEN 1g6¢ - RESPONSES which contains
1848 1F ASC(AS$)=13 THEN TIMEOUT%=@: RETURN the string entered from
1959 RESPONSE$=RESPONSE$+A$ keyboard
1068 NEXT 1%
1978 TIMEOUT%=1:RETURN - TIMEQUT% which equals ¢ if

the user enters a string of
characters from keyboard
before a specified number
of loops (TIMELIMIT%)
Otherwise equals 1

Note: the LEN function 1is
described later in this
chapter

FUNCTIONS

Returns a string of a specified length
disk file. No characters will be echo

passed through except [EL which

of the INPUTS function.

INPUTS { | length |

Figure 9-24 INPUTS Function

Where

INPUTS

» read from the keyboard or from a
ed and all control characters are
is used to interrupt the execution

file
number)

SYNTAX ELEMENT MEANING
length 1s a numeric expression rounded to the nearest
integer. It specifies the length of the returned
string

file number

is the number of the buffer associated with the

file (see Chapter 12)

Examples

DISPLAY

19 OPEN"1',1,"DATA"

20 IF EOF(1) THEN s¢

3¢ PRINT HEXS (ASCLINPUTS(1,#1))) ;
49 GOTO 2¢

5¢ PRINT

6@ END

110 X$=INPUTS (1)
128 IF X$="S'" THEN ERND

COMMENTS

this program lists the contents
of a sequential file in hexa-
decimal

Note: EOF equals -1 when the end
of file is reached (see Chapter
12)

enter S to end the progranm, or
any other character to continue

INSTR

Searches for the first occurrence

of a given substring in a

given string

and returns the position at which the match is found.

| start

INSTR (position |

Figure 9-25 1INSTR Function

Where

SYNTAX ELEMENT

start position

| string | [| substring)

Meaning

is a numeric expression rounded to the nearest

integer which specifies where the search is to

begin,

Its value must be in

the range 1 to 255.

If it is omitted 1 is assumed

string is a

string

expression whose valye Is the

string to be searched

is either a string constant or

string variable

whose first occurrence is to be searched for

substring
Example
DISPLAY
19 X$ = "ABCDEB"
Zg YS = ||Bv|

3¢ PRINT INSTR(XS,YS);INSTR(4,X$,Y$)
RUN

2 6

Ok

COMMENTS

Note that the position at which the
match is found is always evaluated
from the beginning of the original
string, even if a start position is
specified

FUNCTIONS

Special Values

IF. ..
start position>LEN(string)

start position falls outside the
range 1 to 255

string is empty (null string)
substring cannot be found

substring is empty and start posi-
tion is specified

substring is empty and start posi-
tion is omitted

THEN. ..
the returned value is '}

an error message is issued (Illegal
function call)

the returned value is ¢
the returned value is ¢

the returned value equals the start
position value

the returned value is 1

LEFTS

Returns a substring comprised of the leftmost string characters of a

given length.

PES———

Figure 9-26 LEFTS Function

Wnere

SYNTAX ELEMENT

string 1s a string

’ | length)

MANING

expression whose valye 1s the

string from which the substring is to be re-

turned

length Is a numeric expression rounded to the nearest
integer, whose valye (from @ to 255) represents
the length of the returned string

Example

19 AS = "BASIC LANGUAGE"
20 BS = LEFTS$(AS,5)

3¢ PRINT BS

RUN

BASIC

Ok

Remarks

IF. .. THEN. ..
length=g the null string is returned

length falls outside the range an "lIllegal function call" error is
1 to 255 issued

length> = LEN(string) the entire string is returned

LEN

Returns the length of a specified string.

string)

LEN (expression

Figure 9-27 LEN Function

FUNCTIONS

Example

19 X$ = "PORTLAND, OREGON"

20 PRINT LEN(XS$)
RUN

16
Ok

Remarks

All characters, printable and non printable and blanks are counted oy the

LEN function.

MIDS

Returns a substring from a specified string, starting from a specified
character position. The length of the returned substring can be speci-
fied, or all the characters to the end of the string are returned.

MIDS (

) start
| string l-—o@-—q position] length |)

Figure 9-28 MIDS Function

Where

SYNTAX ELEMENT

string

start position

MEANING

1s a string expression whose value is the
string from which the substring is to be re-
turned

1s a numeric expression rounded to the nearest
integer, whose value (> =1 and < = the length of
string) specifies the character position of the
beginning of the returred substring

length 1s a numeric expression rounded to the nearest
integer, whose value (from @ to 255) represents
the length of the returned substring. If length
1s omitted all the characters from start posi-
tion to the end of the string are returned. 1°
length = @ the null string is returned

Example

L1ST
19 A$="GOOD "

20 BS="MORNING EVENING AFTERNOON"
3@ PRINT AS$;MIDS(BS,9,7)

Ok
RUN
GOOD EVENING
Ok
Remarks
IF... THEN. ..
start position>LEN(string) MIDS returns a null string
start position=§ the error message "Illegal function
call" will be displayed
length is omitted all the characters from starc
OR position to the end of the string
there are fewer characters are returned

left than length specifies

MID$ (PROGRAM/IMMEDIATE)

Replaces a portion of a string with another string

a 29

FUNCTIONS

MIDS {

string

start - | replacing
position ’ length) swing

Figure 9-29 MID$ Statement

Where

SYNTAX ELEMENT

string

start position

length

replacing string

MEANING

is a string variable whose value is the string
from which a substring is to be replaced

1S a numeric expression rounded to the nearest
integer, whose valye (>= 1 and<= the length of
string) specifies the character position where
the replacement has to begin,

1s a numeric expression rounded to the nearest
integer, whose valye (from @ to 255) represents
the length of the returned string. 1f length is
omitted all the characters from start position
to the end of the replacing string are replaced.
However, regardless of whether length is omitted
or included, the replacement of characters never
goes beyond the original lenght of string. If
length = @ the null string is returned,

is a string expression which replaces the
characters in the original string, beginning at
start position.

Example

19 AS=""KANSAS C1TY, MO"
28 MID$(AS,14)="KS"

3¢ PRINT AS

RUN

KANSAS CITY, KS

Remarks

1F. ..
start position>LEN(string)

start position=g§

lergth is omitted

length=f#

an attempt is made
to replace characters
beyond the original
length of the s<ring

0CTS

THEN. ..
MID$ returns a null string

the error message ''lllegal function
call" will be displayed

all the characters froa start
position to the end of the replac-
ing string will be replaced

the null string is returned
the replacement of characters ends

at the last character o7 the
original string

Returns string which represents the octal value of a decimal argument.

Figure 9-30 OCTS Function

numeric
expression

FUNCTIONS

Where
SYNTAX ELEMENT MEANING
numeric expression Is rounded to the nearest integer before 0CTS is
evaluated
Example

PRINT OCTS$(24)
3¢9
Ok

Remark

See the HEXS$S function for nexadecimal conversion.

RIGHTS

Returns a substring from a specified string, extracting its. rightmost
characters.

—»{ RIGHTS$ @—-o string @——' length H@-—..

Figure 9-31 RIGHTS Function

Where

SYNTAX ELEMENT MEANING
string is a string expression whose value is the origi-
nal string from which a substring is to be
returned
length 1s a numeric expression rounded to the nearest

integer, whose value (from @ to 255) represents
the length of the returned substring

Example

19 AS$="DISK BASIC"

2@ PRINT RIGHTS (AS,5)
RUN

BASIC
Ok

Remarks

IF. .. THEN. ..
length=§ the null string (length zero) is returned

length>=LEN(string) the entire original string is returned

SPACES

Returns a string of a specified number of spaces.

numeric
SPACES o | expression '(:) ’

“igure 9-32 SPACZS Function

FUNCTIONS

Where

SYNTAX ELEMENT

numeric expression

Example

19 FOR 1=1 T0 5
20 X$=SPACES$(1)
3¢ PRINT X$:1
49 NEXT 1

RUN

Ok

Remark

MEANING

1s rounded to the nearest integer and must be in
the range # to 255 (to avoid "Illegal function
call" error). 1t specifies the number of
spaces, 1.e. the length of the returned string

Also see the SPC function in the next paragraph.

STRS

Converts a numeric expression to a string.

@ | numeric
expression

Figure 9-33 STRS Function

Examples

DISPLAY COMMENTS
5 REM ARITHMETIC FOR KIDS The entered number N is converted
19 INPUT "TYPE A NUMBER":N to a string by the STRS function
2¢ ON LEN (STRS(N)) GOSUB 3¢,1449,
20¢,3090,4909,500
LIST 78 (the argument of STRS is a
18 AS=STRS$(79) number, but the contents of AS is a
20 PRINT AS two character string whose value is
Ok 79)
RUN
70
Ok
LIST The conversion in line 2@ causes
19 a1=1.3 the value in A! to bpe stored
20 A#=VAL(STRS(A!)) accurately In double-precision
3@ PRINT A# variable A#
Ok
RUN
1.3
Ok
Remark

VAL performs the opposite function (see VAL).

STRINGS

Returns a string of specified length, whose characters are all the same
specified ASCII code value, or are all the first character of a specified
string.

FUNCTIONS

numeric
STRINGS o length | ’ | expression | '(:)
——

CID =0

string

length 4 expression |

Figure 9-34 STRINGS Functisn

Where

SYNTAX ELEMENT

length

numeric expression

string expression

Example

1% X$=STRINGS(14,45)

MEANING

1s a numeric expression rounded to the nearest
integer. It specifies the length (from @ to 255)
of the resulting string

is rounded to the nearest integer. It specifies
the ASCI1 decimal code (from @ to 255) whose
corresponding character is used to form the
resulting string

is evaluated. 1Its first character is used to
form the resulting string

2@ PRINT XS$"MONTHLY REPORT''XS

RUN

VAL

E—O—{ 5t |
expression

Figure 9-35 VAL Function

Where
SYNTAX ELEMENT MEANING

string expression 1s evaluated. Leading and trailing blanks, tabs,
and linefeeds (if any) are stripped away. The
remaining string is converted to a number (if it
1s a valid numeric representation value, other-
wise VAL returns @), For examnle:
VAL('" -3") is 3
VAL ("ABC") s ¢

Example

1@ READ NAMES,CITYS,STATES,ZIPS

28 1F VAL(ZIPS)<9@@@@ OR VAL(ZIPS) >96699 THEN
PRINT NAMES TAB(25) "OUT OF STATE"

3¢ 1F VAL(ZIPS)>=9@8@1 AND VAL(ZIP$) <=98815 THEN
PRINT NAMES TAB(25) "LONG BEACH"

Remark

The STRS function performs the opposite task (see STRS).

INPUT/OUTPUT AND SPECIAL BUILT-IN FUNCTIONS

These functions perform the various tasks to do with input/output, value
conversions, error handling, carriage positions, memory locations, etc.

They are listed in alphabetic order below.

FUNCTIONS

Note: This section also includes the reserved string words DATES and
TIMES (which may be used as functions or as variables depending on
whether they appear in an expression or to the left side of the equal
sign in an assignment statement).

DATES/TIMES

Are PCOS elements that are readable or changeable in BASIC by referencing
these reserved strings.

TIMES

Figure 9-36 DATES and TIMES

Remarks

Date and Time may be set either in PCOS by the SSYS command or in BASIC
by an assignment statement. The date is entered either as mm:dd:yy, or
mm:dd:yyyy. The time 1is entered as hh:mm:ss. The user can use his own
delimiter. (Any printable ASCIL character, excluding digits).

For more details see 'Professional Computer Operating System (PCOS) User
Guide'.

Example
DISPLAY COMMENTS
10@ 1F DATES='@4:30:82" statement 1@@ checks the date.
THEN 3¢0¢

Statement 5@@ sets the date, and

. also changes the delimiter.

5¢@ DATES="@5/86/1981"
Statement 6@@ displays the time.

6@@ PRINT TIMES Statement 7@@ set the time

700 %IMES=”¢7:4¢:15“

cvo

Converts an 8-character string to a double precision number.

See Chapter 12.

Cvl

Converts a 2-character string to an integer.

See Chapter 12.

Cvs

Converts a 4-characters string to a single precision number.

See Chapter 12.

EOF

Returns true(-1) if the end of a sequential file has been reached.

See Chapter 12.

ERL

Returns the line number of the line in which an error wads detected.

See Chapter 13.

ERR

Returns the error code number.

See Chapter 13.

FUNCTIONS

LoC

Returns the record number just read or written (random files), or the
number of sectors read or written since the file was OPENed (sequential
files).

See Chapter 12,

LPOS

Returns the current position of the connected line printer print head
within the line printer buffer.

CD e O o B
argument

Figure 9-37 LPOS Function

Where
SYNTAX ELEMENT MEANING
dummy argument is any numeric or string expression. The
returned value 1s not affected by the value of
the argument
Example

1¢@ 1F LPOS(X) >5@ THEN LPRINT CHRS$(13)

MKD$

Converts a double precision value to an 8-character string.

See Chapter 12.

9-39

MK1$

Converts an integer to a 2-character string.

See Chapter 12.

MKS$

Converts a single precision value to a 4-character string.

See Chapter 12.

SPC

Inserts spaces in PRINT or LPRINT statements.

numeric
@ expression

Figure 9-38 SPC Function

Where

SYNTAX ELEMENT

numeric expression

MEANING

is rounded to the nearest integer. It specifies
the number of spaces to be inserted in the
output image either between two output items or
at the beginning or the end of the image.

It must be in the range # to 255 (to avoid an
"lllegal function call" error)

FUNCTIONS

Example

PRINT "OVER" SPC(15) "THERE"
OVER THERE

Ok

Remarks

Either a semicolon (:) or a blank follows SPC in g PRINT or LPRINT
statement.

See also the SPACES function.

TAB

Tabs the cursor or the print head to a specified position, in PRINT or
LPRINT statements.

- numeric
TAB (expression)

Figqure 9-39 TaB Function

Where
SYNTAX ELEMENT MEANING
numeric expression 1s rounded to the nearest integer. The expres-

sion must be in the range 1 to 255 (to avoid
"1llegal function call" error),

1 is the left hangd limit, width minus one is the
righthand limit. [t specifies the precise cursor
(or print head) position in a line

Examples

19 PRINT "NAME' TAB(25) "AMOUNT':PRINT
2@ READ AS,BS

3@ PRINT AS TAB(25) BS

4@ DATA “G.T.JONES'",'$25.00"

RUN

NAME AMOUNT
G.T.JONES $25.00
Ok

Remark

If the current cursor or print head position is beyond the value of the
argument, TAB goes to that position on the next line.

VARPTR

Format 1 (below). Returns the address in memory of the first byte of data
associated with the specified variable.

Format 2. For sequential files, returns the starting address of “has disk
1/0 buffer associated with the file. For random files, returns the
address of the FIELD buffer associated with the file.

VARPTR (()—sf vaniable L }—

O— O S [~QO—

Figure 9-4 VARPTR Function

9-42 meees

FUNCTIONS

Where
SYNTAX ELEMENT MEANING

variable name any type of variable (numeric string or array).
The address returned will be an integer in the
range -32768 to 32767.
Note: If a negative address is returned, add
65536 to obtain the actual address

file number the number of the buffer associated with the
file,

Example

108 X%=VARPTR(A(@))

Remarks

A value must be assigned to the variable prior to execution of VARPTR, if
it is a simple variable. Otherwise an "Illegal function call" error
results.

VARPTR is usually used to obtain the address of a variable or array so it
may be passed to an assembly language subprogram. A function call of the
form VARPTR(A(@)) is usually specified when Passing an array, so that the
lowest-addressed element of the array is returned.

10. SUBPROGRAMS
.

ABOUT THIS CHAPTER

Often, the same sequence of statements must be executed more than once
within a program. In this case you need not reproduce that sequence
several times. You may parcel it up as a subprogram and simply call that
subprogram from various places in your program. At the end of each
execution of the subprogram control goes back to the statement following
the call.

The M20 provides you with two kinds of subprogram which may be called by
a BASIC program:

~ subprograms written in BASIC (we shall call them "BASIC Subroutines')

- subprograms written in the M20 ASSEMBLER i.e., PCOS commands or other
assembler subprograms.

This chapter will illustrate these two kinds of subprograms and how to
call them when you are in BASIC.

CONTENTS
BASIC SUBROUTINES 10-1
GOSUB/RETURN (PROGRAM) 10-3

ON...GOSUB/RETURN (PROGRAM) 10-7

PCOS COMMANDS CALLED FROM 10-8
BASIC AND ASSEMBLY LANGUAGE
SUBPROGRAMS

CALL (PROGRAM/IMMEDIATE) 10-9
EXEC (PROGRAM/IMMEDIATE) 10-M1

SYSTEM (PROGRAM/IMMEDIATE) 10-12

PROGRAMMABLE KEYS 10-13

SUBPROGRAMS

BASIC SUBROUTINES

A BASIC subroutine is formed by a sequence of BASIC statements and it is
an integral part of the program. Usually (but not necessarily) a BASIC
subroutine begins with a REM statement and ends with a RETURN statement.
It is good programming practice always to insert subroutines one after
the other at the end of the program and write an END, GOTO, or STOP
statement before the first statement of the first subroutine (to avoid
“falling" into the subroutine block).

A subroutine is called by a GOSUB or an ON...GOSUB statement. At the end
of the execution of a subroutine, control is returned to the first
statement following the most recent GOSUB (or ON...GOSUB) that has been
executed.

We shall call a BASIC subroutine "pending" if it has not yet been
completed when a break is encountered. Any modification to the resident
program (deleting, or editing lines, and so on), will prevent the
subroutine from resuming execution.

The following example illustrates the call mechanism (statements GOSUB
and RETURN).

DISPLAY COMMENTS

19 REM Main Program when statement 50 is encountered (GOSUB), con-

trol 1s passed to statement number 25@ (which is

. the first statement of the subroutine). The

5¢ GOSUB 25¢ subroutine is then executed and when statement

6@ PRINT X &— 298 (the RETURN statement) is encountered,

control is transferred back to statement 6@, the
. first statement after GOSUB.

249 GOTO 5¢¢

250 REM Sub1 The statement 24¢ (GOTO) prevents falling into
260 2=SQR(T) the subroutine by directing control of execution
around it

299 RETURN —

509 éND

If a program refers to the same subroutine more than once, control is
always returned from the subroutine to the statement following the most
recent GOSUB (or ON...GOSUB) executed. For example, consider a program
that contains the following statements:

DISPLAY COMMENTS

1¢ REM Main Program when the subroutine is referred to by

statement 5@ (GOSUB), control is returned,

. after execution of the subroutine, to state-

—5@ GOSUB 25¢ ment 6@. When the subroutine is referred to

6@ PRINT X « by statement 14¢ (GOSUB), control is returned
to statement 15¢

— 149 GOSUB 25§
158 1IF X >32 THEN 30 <

249 GOTO 5¢@
—+25@ REM Subl
268 Z=SQR(T)

298¢ RETURN
5@@ END

A subroutine may also be called by another subroutine. In this case e
say that the called subroutine is "nested" within the calling one. The
process may be repeated to any depth; the number of nested active
subroutines is only limited by the amount of memory available. (An active
subroutine is a subroutine where RETURN has not yet been executed). Each
GOSUB, whether in the main program or in a subroutine, is always
assc:iated with a RETURN statement.

This RETURN statement causes control to be transferred to the first
statement following GOSUB. This kind of association is made dynamically
(i.e., at run-time), the first RETURN executed is associated with the
most recent GOSUB executed, the second RETURN with the next most recent
GOSUB and so on.

1Tn_.?

SUBPROGRAMS

DISPLAY

18 REM Main Program

—800 GOSUB 1549

819 -—

1498 END
“»15@@ REM Sub1

r—19¢¢.GOSUB 2509
1919 -—

> 25@@ REM Sub2

3003 RETURN

2498 RETURN ——|—

COMMENTS

8@@ GOSUB 1548 shifts control to the subroutine
Sub1

1588 REM Subl marks the entry point of the
subroutine Subl

19¢@ GOSUB 25¢@ shifts control from Subl to Sub2
(nested subroutine)

2509 REM Sub2 marks the entry point of the
subroutine Sub2

3@P@ RETURN shifts control to the statement
following the most recent GOSUB that has been
executed (1.e., to the statement 191g). 2499
RETURN shifts control to the statement following
the next most recent GOSUB that has been
executed (1.e., to the statement 81¢)

GOSUB/RETURN (PROGRAM)

GOSUB calls a BASIC subroutine by branching to the specified line number.

RETURN transfers control to the statement following the most recent GOSUB
(or ON...GOSUB) executed.

—(Gosus line SN

number

Figure 10-1 GOSUB Statement

1N_"

Figure 10-2 RETURN Statement

Where

SYNTAX ELEMENT

line number

Characteristics

A SUBROUTINE MAY...

begin with any statement other than
NEXT or WEND

finish with a RETURN statement

MEANING

1s the first line of a BASIC subroutine

COMMENTS
for example a subroutine might
begin with REM, LET, FOR, etc.

It is good programming practice to
begin a subroutine with a REM
statement (or a statement with a
comment field)

it is good programming practice to
finish a subroutine with a RETURN
statement. In any case RETURN must
be the last statement executed in a
subroutine, as RETURN is the only
statement that allows control to be
returned to the main program,

A subroutine may also contain more
than one RETURN statement (for
instance, if a subroutine has
several branches, any of which
require a return to be made to the
main program)

SUBPROGRAMS

be called anywhere and any number
of times in a program

be placed anywhere in the program

call another subroutine

access any program variable

Examples

DISPLAY

L1ST

1@ DEFINT A-Z 'defines all integers
2@ INPUT "Enter 3 integers'';A,B,C
3@ LET X=A

48 LET Y=B

5@ GOsSus 11¢

6@ LET X=G

70 LET Y=C

8@ GOSUB 11¢

9@ PRINT "The GCD of'";A;B;C;"is'";G
144 GOTO 19¢

1@ LET Q=INT (X/Y) 'routine GCD

if a program calls the same sub-
routine more than once, control 1is

returned, after execution of the
subroutine, to the statement fol-
lowing the GOSUB (or ON...GOSuUB)

that was last executed

however it is good programming
practice to write subroutines one
after the other at the end of the
program. To avoid "falling" into a
subroutine write an END, or GOTO or
STOP statement before the first
statement of a subroutine

the number of nested active sub-
routines is only limited by the
amount of memory available

all variables defined in the "main"
program ('global variables') are
available to the subroutines.
Therefore subroutines may work on
program variables without restric-
tion (even modifying their values
1f need be)

COMMENTS

on the left is a complete program

illustrating a subroutine. The
subroutine uses Euclid's Algorithm
to find the greatest common divisor
(GCD) of three integers. The user
enters three integer numbers from
the keyboard. The first two numbers
entered (A and B) are assigned to X
and Y respectively (see statements
30 and 48) and their GCD is deter-
mined in the subroutine (statements
118 to 18@). The GCD just found is

1TN_R

120 LET R=X-Q*Y

13¢ 1F R=@ THEN 17¢

149 LET X=Y

150 LET Y=R

168 GOTO 119

178 LET G=Y

18@ RETURN

198 END

Ok

RUN

Enter 3 integers? 1377,2916,4@5
The GCD of 1377 2916 4¢5 is 81
Ok

RUN

Enter 3 integers? 4,3333,67

The GCD of 4 3333 67 is 1

Ok

LIST
19 INPUT “Enter N>@" ;N5
28 1F N%<=@ THEN 1¢
3¢ GOSUB 5¢
49 END
5@ REM SUB1(Sum of Integers)
60 S%=(N%*(N%+1))/2
78 PRINT ''Sum of Integers

from 1 to ";N%;'"=":5%
8¢ INPUT 'Sum of Squares (Y/N)'"; XS
9¢ IF X$="Y' THEN GOSUB 114
188 RETURN
11¢ REM SUB2(Sum of Squares)
120 S2%=(N%* (N%+1)*(2%N%+1))/6
138 PRINT "Sum of Squares

from 1 to ";N%;"=":52%
14@ RETURN
Ok
RUN
Enter N>@? 5
Sum ¢f Integers from 1 to S = 15
Sum of Squares(Y/N)? Y
Sum of Squares from 1 to 5 = 55
Ok

assigned to X in statement 6@ and
the third number (C) is assigned to
Y in statement 7@. The subroutine
1s called again from statement 8¢
to find the GCD of these two
numbers. This result is the GCD of
the three integers entered. These
three numbers, with their GCD, are
displayed by statement 9¢.

Note: Statement 19 defines all
variables as integer variables as
the program works on integer num-
bers only

this program calculates the sum of
integer numbers from 1 to N (where
N is entered from keyboard) and
optionally the sum of the square of
these numbers. The program has two
subroutines; SUB1 and SUB2 written
at the end of the program (state-
ments from 5¢ to 19¢ and from 11¢
to 144).

First of all statements 19, 20 and
38 are executed. Statement 39
(GOSUB) calls the subroutine SUB1
and its statements are executed in
sequence up to statement 9¢. This
statement executes a test:

- if X$ (entered from keyboard) is
different from "y, control
passes to the statement 14¢
(RETURN) and then to statement 49
(END)

- 1f X$ equals "Y', control passes
to SUB2 ('"nested subroutine').
When statement 14@ (RETURN of
SUB2) 1is reached, control passes
to statement 108 (RETURN of
SUB1), then to statement 4@ (END)

SUBPROGRAMS

ON...GOSUB/RETURN (PROGRAM)

ON...GOSUB calls one of several specified subroutines, depending on the
value of a given expression.

RETURN transfers control to the statement following the most recent
ON...GOSUB (or GOSUB) that has been executed.

U
I line
number

numeric
: . ’ expression :

Figure 10-3 ON...GOSUB Statement

RETURN

Figure 10-4 RETURN Statement

Where
SYNTAX ELEMENT MEANING
numeric expression its value determines which line number in the

list will be used for branching. A value of 1
causes the subroutine at the first line number
in the list to be called; a value of 2 causes
the subroutine at the second line number in the
list to be called and so on. 1f the value is a
non 1integer, 1t 1is rounded to the nearest
integer.

If the value is zero or greater than the number
of items in the list (but less than or equal to

10-7

255), BASIC continues with the next executable
Statement. 1If the value is negative or greater
than 255, an "l1llegal function call" error
occurs

line number each line number in the list must be the first
line number of a subroutine

Example

DISPLAY

LIST)

19 INPUT "Enter 1,2,0r3";K%
28 ON K% GOSUB 49,58, 6@

3@ END

COMMENTS

if you enter 1, 2, or 3 the program
will display SUB1, SUB2 or sug3
respectively., In every case a3
RETURN statement transfers control

40 PRINT "'SUB1'':RETURN to the END.
58 PRINT "'SUB2":RETURN

6@ PRINT "'SUB3'':RETURN If you enter an integer between ¢

Ok and 255, other than 1, 2, or 3, the
RUN program will display nothing

Enter 1,2,0r3? 2

5UB2

Ok

PCOS COMMANDS CALLED FROM BASIC AND ASSEMBLY LANGUAGE SUBPROGRAMS

CALL and EXEC allow you to call PCOS commands or Assembly language
subprograms, when you are in BASIC,

Both CALL and EXEC Statements perform the same function but:

- EXEC is wused when the arguments to pe passed to the corresponding
parameters gre constants

~ CALL is used when the arguments to pe passed to the corresponding
parameters are either constants Or program variables or both,

SUBPROGRAMS

CALL and EXEC may be used either in a BASIC program or in immediate mode
but they are more often used in a program. At the end of the execution of
an Assembly language subprogram or a PCOS command, control returns either
to the statement following the call (if CALL or EXEC were used in a pro-
gram), or to BASIC Command Mode (if CALL or EXEC were used in Immediate
Mode).

CALL and EXEC allow a BASIC program to communicate with the PCOS oper-
ating system, for example to set system global variables to desired
values before other BASIC programs and PCOS commands are executed. At the
end of the execution of such a program you may remain in BASIC or go to
PCOS (by the SYSTEM Command).

Usually a system initialization program is called INIT.BAS. This is a
reserved file name. The M20 system just after loading PCOS and BASIC,
searches for that file on both drives. If the file is found, the M20
enters BASIC and INIT.BAS is run.

Remarks

At the end of execution of a CALL or EXEC statement activating a SBASIC
PCOS command, the newly set values will not be taken into account in the

newly set values will become operative in subsequent programs, thus an
EXEC "ba file identifier" often follows an EXEC "sb..." statement.

The EXEC statement only (not the CALL statement) allows You to execute a

device re-routing command while in BASIC (for further details see
"Professional Computer Operating System (PCQS) - User Guide'')

CALL (PROGRAH/IHHEDIATE)

» Passing either

of caLe subprogram (

name | argument

|
-

Figure 10-5 CALL Statement

Where

SYNTAX ELEMENT

subprogram name

argument

Examples

DISPLAY

1@ DEFINT A-C

3¢ FILES="VOL1:FILE@@1"
4@ S1ZE%=1¢
5S¢ CALL "fn"(FILES,SI1ZE%)

9¢ Cé:”LIST”
19@ CALL "pk''(&41,C$)

228 A=10
23@ B=2¢
249 C=209

25@¢ CALL "'SuB121''(A,B,@ C)

MEANING

may either be the name of a PCOS command or the
name of an Assembly language subprogram. It must
be either a string constant or a string variable

may be a constant or a simple variable or an
expression whose value is passed to the corre-
sponding parameter (in the same way as an
argument 1s passed to the corresponding para-
meter in a function call, See Chapter 9).

If it is an output argument (i.e. a program
variable into which a value is returned), the
argument name must be preceded by an "at" sign
(@).

A variable argument (both an input and an output
argument) must be initialized before executing
the CALL statement.

COMMENTS

statement 50 cails PCOS command
FNEW, passing the file identifier
by the string variable FILES and
the file size by the numeric
variable SIZE%. Statement 1¢¢ calls
the pkey PCOS command, specifying
the key by the hexadecimal constant
841 (i.e. A, see Appendix A) and
the corresponding string by the
variable CS$. Statement 25§ calls
the Assembly language subprogram
SUB121 specifying two input argu-
ments (A and B) and one output
argument (@C). Note that A, B and
C have been initialized before.

SUBPROGRAMS

Remarks

The PCOS command LTERM (Line Terminator) is normally called from BASIC by
the CALL statement. It returns an integer (@, 1, 2) corresponding to the
respective carriage return (, H, I last entered.

The PCOS command CI (Communication Interface) 1is normally called from
BASIC to send and receive characters to and from a communication RS-232-C
port. Other PCOS commands (LABEL, SPRINT, BVOLUME, etc.) are normally
called from BASIC.

For more information see 'Professional Computer Operating System (PCOS)

User Guide'" and for CI command see "1/0 with External Peripherals User
Guide".

EXEC (PROGRAM/IMMEDIATE)

Calls a PCOS command or an Assembly language subprogram passing constant
values to the subprogram.

string
.EXEC expression |

Figure 10-6 EXEC Statement

Where
SYNTAX ELEMENT MEANING
string expression its value 1is interpreted as a subprogram name
followed by a list of constant arguments
Remarks

/

If EXEC calls a PCOS command, the contents of the string expression
following EXEC must agree with the command as it would be entered if you
were in PCOS.

11 11

If EXEC calls an Assembly language subprogram, the contents of the string
expression following EXEC is a list of parameters separated by commas.
The first of them specifies the subprogram name and the following
parameters specify the arguments to be passed to the subprogram,

Note: The arguments are not enclosed in parentheses and may only be
constant arguments.

Examples
DISPLAY COMMENTS
statement 1¢0@ allows you to call
. the PKEY PCOS command. Note that
100 EXEC "pk '#', 'RUN V1:CASHFLOW'" the strings:

- #
150 EXEC "fp 1:MY.FILE/SECRET" - RUN V1 :CASHFLOW
must be surrounded by a pair of
single quotes (') as if you were

18 AS="fn 1:FILEA,15" in PCOS.

. Statement 15@ allows you to call
23@ EXEC AS the FPASS PCOS command.

Statement 23@ allows you to call
the FNEW PCOS command, specifying
the command as the contents of
the string variable initialized
in statement 184.

SYSTEM (PROGRAM/IMMEDIATE)

Returns to PCOS and closes all data files.

Figure 10-7 SYSTEM Command

SUBPROGRAMS

Remarks

SYSTEM allows you to exit BASIC and return to PCOS. It may be used both
In a program and an immediate line. SYSTEM is often used at the end of an
initialization Program which executes a series of PCOS commands and/or
Assembly language subprograms using CALL and EXEC statements.

PROGRAMMABLE KEYS

By using the NELIWE and | COMMAND | keys, 1in conjunction with other

non-shift keys, you may assign a special meaning to each key.

This may be a BASIC or PCOS command, an expression, a constant, or any
group of characters that you may find useful to have on the keyboard.
Assignment can be made either in a BASIC program via the CALL “pk" (or
EXEC "pk...™") Statement, or in PCOS via the PKEY commar.d.

Depending on your needs, assignment of g specific function to a key can
be ‘'permanent', automatically made every time you switch on the system
(and the System disk is mounted in a drive), or "temporary', to last
until the machine is on. For more details see '"Professional Computer
Operating System (PCOS) User Guide'.

11. PROGRAM SEGMENTATION

ABOUT THIS CHAPTER

In this chapter we shall look at the techinque of Program Segmentation
and how to pass data from one program to another. We shall illustrate
CHAIN (and its several options) and common statements. Moreover, we shall
look again at the use of RUN and LOAD with the R option.

CONTENTS

WHEN USING PROGRAM SEGMEN- 11-1
TATION

PASSING DATA 11-1
PROGRAM CHAINING 11-2
CHAIN (PROGRAM) 11-3

COMMON (PROGRAM) 11-6

PROGRAM SEGMENTATION

WHEN USING PROGRAM SEGMENTATION

Program segmentation means splitting a large program into two or more
smaller programs ("segments") which may be executed in sequence to solve
the same problem, Using this technique you may execute programs which
could be larger than the available memory, but Program Segmentation is
useful in many other situations too (some of these situations are
illustrated in the following table).

IF. .. THEN. ..
a program is larger than the avail- you need to split it into several
able memory small programs to be executed one

after the other

a program has sections which are you could code these sections as
rarely executed separate programs and load them
into memory when necessary

a program has a section which must you could code these sections as
always be resident, whereas other separate programs. The resident
sections may be transient (and/or segment (root) will load the first
used by other programs) transient segment (overlay) this
(or the root) will load the second,

and so on

Each overlay (or a part of it) may
be deleted before a new overlay is

loaded
a program may be divided into dif- you could code these sections as
ferent sections, each performing separate programs to reduce the
a specific function cost of programming

PASSING DATA

another.

This may be done in several wdys as shown in the following table.

1IF you use... THEN. ..

CHAIN 1in conjunction BASIC creates a 'common area" which 1is not
with one or more COMMON deleted when the CHAINed program 1is loaded
statements (whereas the current program is deleted).

The common area is passed to the CHAINed program
and contains all the variables specified in the
COMMON statement(s)

CHAIN with ALL all the variables defined in the current program
are passed to the CHAINed program

CHAIN and the current you may pass data to the CHAINed program via
program accesses one data files.
or more data files
The CHAIN statement does not close data files.
Passing data via data files is compatible with:
- CHAIN and COMMON statement
- CHAIN with ALL

- CHAIN with MERGE (and possibly DELETE - see
the DELETE option explanation later in this

Chapter)
RUN or LOAD with the you pass data to the specified program via data
option R, and the cur- files.
rent program accesses
one or more data RUN and LOAD with R do not close data files
files

PROGRAM CHAINING

As we have already seen program segmentation may be performed by the use
of:

- CHAIN and COMMON statements

- RUN and LOAD commands.

PROGRAM SEGMENTATION

The CHAIN statement, with its several options, gives you a powerful tool
for segmenting a program.

CHAIN may be used either:

- in conjunction with COMMON statements to pass common variables to the
CHAINed program, or

- with the MERGE option to merge the CHAINed program with the current one
(DELETE is often used in conjunction with MERGE to delete a section of

the program, allowing overlays to be loaded in sequence) or

- with the option ALL to pass all the variables to the CHAINed program.

CHAIN (PROGRAM)

Chains a specified program to the program in memory and allows you to
Jass variables.

CHAIN leaves the files open and preserves the current OPTION BASE set-
ting.

=
file tine number
'(CHAIN) :-(-MERGE; *] identifier '< : > *1 expression |) ALL
y DELETE | line - | line 1

number number
line 1
number
Figure 11-1 CHAIN Statement
Where
SYNTAX ELEMENT MEANING
MERGE specifies that the CHAINed program 1is MERGed

with the program in memory. The CHAINed program
must be an ASCI1 file.

113

file identifier

line number expression

ALL

DELETE

IF MERGE is omitted, the program in memory is
deleted (except the common area) after the
CHAINed program has been loaded.

It is often used with line number expression and
DELETE to load overlays (see Examples).

Note: MERGE option preserves variable types for
use by the CHAINed program. When using the
MERGE option, user-defined functions will be un-
defined after the merge is complete

1s a string expression which specifies the
program file to be CHAINed

s either a line number or an expression that
evaluates to a line number in the CHAINed pro-
gram,

It is the starting point for execution of the
CHAINed program.

It is often used with MERGE and DELETE to load
overlays.

If it is omitted, execution begins at the first
line.

Note: Line number expression is not affected by
a RENUM command

specifies that all the variables of the proaram
in memory are to be passed to the CHAINed
program. (lt preserves variable types).

If 1t is omitted, information is passed either
by the use of a common area or by the use of
data files

specifies (by a range of line numbers) that a
section of the current program has to be
deleted.

PROGRAM SEGMENTATION

Examples
DISPLAY

1@ REM PROG1
2¢ COMMON A1,B1,C1$

199 CHAIN '"PROG2"
11¢ END

1¢ REM PROG2
2¢ COMMON A25,B2S

8¢ CHAIN '"PROG3",204
9@ END

1¢ REM PROG14

The DELETE operation comes before the CHAINed
program has been loaded.

DELETE is often used with MERGE and line number
expression, to load overlays.

Note:

The line numbers used after DELETE are

affected by a RENUM command

5@ CHAILN '1:PROG11", 1¢@, ALL

6@ END

COMMENTS

program PROG1 chains PR0G2 and
passes the values of A1,B1, and
C1$ to it (by use of a common
area).

PROG2 resides on the last sele-
cted drive.

program PROG2 chains PROG3 and
passes the values of A2$ and B2S
to it (by use of a common area).

The starting point for execution
of PROG3 is line 284.

PROG3 resides on the last selected
drive

program PROG1§ chains PR2G11 and
passes all the program variables
to it.

The starting point for execution
of PROG1Y is line 10@.

1@ REM ROOT

19@ CHAIN MERGE ''V1:0VERLAY1'", 1009
118 END

10@@ REM OVERLAY1

15@@ CHAIN MERGE 'V1:0VERLAY2',
190¢, DELETE 19@¢-150¢
151¢ END

COMMON (PROGRAM)

PROG11 resides on the diskette
inserted in drive 1

ROOT chains OVERLAY1 with the
option MERGE. OVERLAY1 must be an
ASCI1 format file residing on the
disk named V1. It will be executed
starting from line 1¢¢@¢

OVERLAY1 chains OQVERLAY2 with the
option MERGE. OVERLAY2 must be an
ASCI1 format file residing on the
disk named V1. Before it is loaded,
lines 10@@ to 150¢ will be deleted
in memory.

OVERLAY2 will be executed starting
from line 100¢@

Defines a common area which is not erased by the CHAINed program and

allows you to pass variables from one

program to another.

COMMON v —>] variable

array

Figure 11-2 COMMON Statement

Examples

DISPLAY

19 REM PG1
2¢ COMMON A1,B1,C1,D1$

8@ CHAIN ''VOL2:PG2"
9@ END

1@ REM PG2

2¢ PRINT A1,81,C1,015

12¢ END

1¢ REM PG1
2¢ DEFDBL C
3@ COMMON A1,81,C1,01$

9¢ CHAIN ''vOL2;PG2"
19@ END

1@ REM PG2

2¢ DEFDBL C

13@ END

COMMENTS

COMMON statements are used in conjunction with a
CHAIN statement.

A program may have one or more COMMON state-
ments.

Variables specified in these statements are
allocated in the common area starting from the
beginning and in the order in which they appear
in the program.

The CHAINed program need not specify, through
the use of COMMON statements, the common
variables specified by the CHAINing program.

The CHAINed program will use these variables
with the same names specified in the CHAINing
program.

1n our example the values of the variables A1,
81, C1 and D1$ 1in the program PG1 are passed to
the CHAINed program PGZ, which may display them
(see statement 2@).

Each type definition statement (DEFINT, DEFSNG,
DEFDBL, DEFSTR) referring to common variables,
must precede the associated COMMON statement and
must be repeated in the CHAINed program. (Note
the statements DEFDBL, both within PG1 and PG2)

19 REM PROGRAMI
2¢ COMMON A$%,BS,CS
39 COMMON AS, A1

199 END

19 REM PGY
29 DIM A1(15,29)
3¢ COMMON A1(),B1,C1

10@ CHAIN "VOL2:PG2"
119 END

1¢ REM PG2
5¢ PRINT A1(1,1)

99 END

18 REM mod?

20 A=1:B=2

3@ COMMON A,B
4@ GOTO 64

5@ COMMON C

6@ CHAIN '"mod3"

1@ REM mod?2
28 A=1:B=2
3@ COMMON A
4¢ GOTO 6@
5¢ COMMON B
6@ CHAIN "mod3'"

1¢ REM mod3
20 PRINT A;B

Remark

it 1s not good programming practice to repeat a
same variable name (in this case AS) either in
different COMMON statements of the same program,
or in the same COMMON statement. In any case
multiple definitions are equivalent to a single
definition.

a COMMON statement can also specify array names.
Such specifications are followed by a pair of
parentheses,

Each use of common array must be explicitly
described by a DIM statement in the CHAINing
program (but not in the CHAINed one, otherwise a
"Duplicate Definition" error occurs),

The DIM statement must be written before the
associated COMMON statement,

The COMMON statement is a declarative statement,
thus it allocates a common area even if control
of execution does not pass through it,

For example, when executing program "mod1" an
"lllegal function call in 50" is issued, as
variable C has not been initialized. When
executing program ''mod2" instead, program ''mod3"
1s CHAINed: it displays both A and B variables,
even if statement 5@ of "mod2" 1s jumped over.

Common variables must always be initialized within the CHAINing program.

12. DISK FILE HANDLING

ABOUT THIS CHAPTER

This chapter describes the two types of external data files available;
sequential and random files. We shall see how each is created, opened and
closed and how to get data in and out of them.

CONTENTS
SEQUENTIAL AND RANDOM FILES 12-1 EOF 12-26
SEQUENTIAL FILES 12-2 UPDATING A SEQUENTIAL FILE 12-27
RANDOM FILES 12-3 DEFINING A RECORD LAYOUT 12-27
OPENING AND CLOSING FILES 12-3 FIELD (PROGRAM/IMMEDIATE) 12-28
OPEN (PROGRAM/IMMEDIATE) 12-4 WRITING RECORDS TO A RANDOM 12-30

FILE
CLOSE (PROGRAM/IMMEDIATE) 12-7

LSET/RSET 12-31
WRITING A SEQUENTIAL FILE 12-9 (PROGRAM/IMMEDIATE)
PRINT# (PROGRAM/IMMEDIATE) 12-10 MK1S/MKSS/MKDS 12-33
PRINT# USING (PROGRAM/ 12-16 PUT-File (PROGRAM/IMMEDIATE) 12-35
IMMEDIATE)

L0oC 12-37
WRITE# (PROGRAM/IMMEDIATE) 12-17

READING RECORDS FROM A 12-38
Loc 12-18 RANDOM FILE

READING A SEQUENTIAL FILE 12-19 GET-File (PROGRAM/IMMEDIATE) 12-39

INPUT# (PROGRAM/IMMEDIATE) 12-20 Cvi/cvs/cvD 12-41

LINE INPUT#=(PROGRAM/ 12-23 UPDATING RECORDS OF A 12-42
IMMEDIATE) RANDOM FILE

DISK FILE HANDLING

SEQUENTIAL AND RANDOM FILES

A data file is created (i.e.

- the PCOS command FNEW which gives a name to

its initial size

made known to the system) either by:

a new file and specifies

- the OPEN statement which allows a BASIC program to access the file,

OPEN gives a name to a file (
another OPEN). Moreover it as
used for any Input/Output oper

If you must create a very large data fil
size fairly accurately,
OPEN statement. FNEW will allocate a sequ
to the file thus making Input/Output oper
FNEW will assure you that there 1s enough

All files are '"byte stream" only, and thus
or data interpretation upon 1/0.
file in, however. These modes control onl

be allowed, and do no*

then create the file b

There are four

which has not yet been created by FNEW or
sociates a data buffer with the file (to be
ation) and specifies an access mode.

e and you know the final file
y FNEW instead of by an
ence of contiguous disk sectors
ations more efficient. Moreover
room for the file on the disk.

have no intrinsic data format
possible modes to open a
y the type of access that will
add any interpretation of the data flow.

The access mode may be changed for a file each time 1t is re-OPENed.

The table below

the access mode used.

FILE TYPE

Sequential (or Stream-
oriented)

summarizes
classifies files into two categories (

the main

CHARACTERISTICS

a sequential file is
considered as a
sequence of ASCII char-
acters without any
grouping criterion.

The number of data
items read or writ*en
by each Input/OQutput
statement can vary and
is usually determined
by the list of vari-
ables specified in the
statement

features
sequential and random) depending on

of a data file ang

ACCESS MODE

Input: sequential input
(one item after a:-
other) from the begin-
ning of the file

Output: sequential out-
put from the beginning

of the file. Data on
the file (if any) is
lost

Random (or Record-
oriented)

SEQUENTIAL FILES

a random file 1is
considered as a se-
quence of data grouped
in records.

Each Input/Output
statement may read or
write one record at a
time.

The records of a ran-
dom file all have the
same length and struc-
ture

Sequential files are the simplest way to store

storing free-form data

Append: sequential out-
put from the end of the
file. Data on the file
is not lost

Random: direct access
lnput/Output to the
specified record

data. They are ideal for
(which may not be grouped in records). The data

that 1is written to a sequential file is stored, one item after another
(sequentially), in the order it is sent and

order.

There are several points to bear in mind:

if you open a sequential file in OQutput,

is read back 1n the same

you start writing at the

beginning of the file and the file's previous contents are lost

- if vou open a sequential file in Append, you start writing after the
last data item on the file

- to update a sequential file, open the file in Input, read the file and
write the updated data to a new file which must have been opened in

Qutput

- data written on a sequential file usually includes delimiters to signi-
fy where each data item begins and ends

DISK FILE HANDLING

- to read a sequential file, you must open it in Input and you must know
the format of the data; whether for example, the file consists of
numbers separated by blanks, or of numbers and strings separated by
commas

- a data item on the file is always written as a string of characters
(one byte for each character of data). For example, the number:

351.27
requires 6 bytes of disk storage, excluding the delimiters (which may
be blanks or commas).

RANDOM FILES

These are ideal for storing data which may be grouped in records. The
records of a random file must all be of the same length.

Accessing random files requires more program steps than sequential files
but there are advantages when using random files:

- instead of having to start reading or writing at the beginning of a
file, you can read or write any record you specify

- to update a file, you do not have to read the entire file, update the

data and write 1t again. You can rewrite or add to any record you
choose, without accessing all the preceeding records

- opening a random file allows you to read and write from the file via
the same buffer.

OPENING AND CLOSING FILES

To access a file with a BASIC program, you must open 1t with an OPEN
statement. This specifies the file identifier, the access mode, the file
number and if the file is a random file, the record length.

The maximum number of concurrent files (i.e., OPENed at the same time may

be set by the PCOS command SBASIC or assumed by default (the default
value is 3). The maximum number cannot exceed 15.

19 -~

Whenever you open a file, a file (or buffer) number is associated with
the file. Each buffer is given a number from 1 to 15. You will use this
number to specify the file in any 1/0 statement of your program. You can
think of a buffer as a waiting area that data must pass through on the
way to and from the disk file.

For random files, the user must define the structure of the buffer (i.e.,
of the records in the file) by fixing the length (in characters) of each
data item within the buffer by a FIELD statement.

When you access a file by an Input/Output statement, you must specify the
file by its file number instead of its identifier.

When you CLOSE a file you delete the connection between the file and its
buffer and that file may no longer be accessed, until you re-OPEN it. If
you re-OPEN it, you may associate either the same or another buffer with
the file.

OPEN (PROGRAM/IMMEDIATE)

Opens a disk file allowing Input/Output operations on the file.

Lf the specified file is not found it will be created (unless access mode
is "1'" - See Remark below).

file | file | record l
OPEN m'°°°;'.’ —-@@* ,.'umb., —‘Q—‘ identifier '@ "] tengh

Figure 12-1 OPEN Statement

Where
SYNTAX ELEMENT MEANING
access mode is either a string constant or a string variable

containing one of the following characters:

DISK FILE HANDLING

file number

file identifier

record length

-"A"(Append): sequential output after the last

data item on a sequential file. Data in the
file (if any) is not lost, new data will be
added at the end

-'1" (Input): sequential input starting from the
beginning of a sequential file

-"0" (Output): sequential output starting from
the beginning of a sequential file. Data 1in
the file (if any) is lost

-'R" (Random): Input/Output access to the records
of a random file

Note: 1f a sequential file is empty (i.e. does
not contain data), "0" and "A" are equivalent

1s a numeric expression whose value, rounded to
the nearest integer, must be in the range 1 to
15. The specified file number remains associated
with the file as long as it is open and will be
used to specify the file in any 1/0 statement in
the program

Is either a string constant or a string variahle
and may specify:

- a new file (i.e. unknown to the system); in
this case the file is created (except for
access mode '"'1")

- an existing file; 1in this case the file 1is
only OFENed

is a numeric expression (rounded to the nearest
integer) which, 1if included, sets the record
length of a random file.

This parameter may only be set for rardom files.
[ts default value is 256 bytes.

Its maximum value 1is that of the record size
parameter set by the PCOS command SSASIC. SBASIC
can set the record size parameter from 1 to
1996 (with a default value of 256)

Examples

DISPLAY

5@ OPEN 'A",1,'V1:EXAMPLE"
16@ OPEN "0',2,'"V1:TEST"

27¢ OPEN “R'",3,"V2:F1",80
28¢ OPEN "R',4,"V2:F2",20

499 CLOSE 2
S@@ OPEN "1",5,"V1:TEST"

6@@ OPEN "R',2,FILES,RN

COMMENTS

Statement 5@ opens the sequential
file EXAMPLE, which is resident on
the disk named V1. The access mode
is Append and file number 1 1s
associated with the file.

Statement 16@ opens the sequential
file TEST, which is resident on the
disk named V1. The access mode 1is
Qutput and file number 2 is asso-
ciated with the file.

Statement 27@ opens the random file
F1, which is resident on the disk
named V2. The file number 3 is
associated with the file and a
record length of 8@ bytes is set.

Statement 280 opens the random file
F2, which 1s resident on the disk
named V2. The file number 4 1is
associated with the file and a
record length of 2@ bytes is set.

Statement 490 closes the file TEST.

Statement 5S@@ re-opens the file
TEST in lnput mode and associates
the file number S5 with 1it.

Statement 6@@ opens a random file,
whose identifier 1is the contents of
the string wvariable FILES. The
record length 1s the contents of
the numeric variable RN. The as-
sociated file number 1is 2. 1t has
been made available by statement
499

DISK FILE HANDLING

Remark

You cannot create a

file by an OPEN statement if you specify '"1' as

access mode. 1f you try to, a "File not found" error occurs.

Closes disk files.

CLOSE (PROGRAM/IMMEDIATE)

Figure 12-2 CLOSE Statement

Where

SYNTAX ELEMENT

file number

MEANING

is a numeric expression whose rounded value
specifies the number of the buffer associated
with the file. This number must be from 1 to 15.
A CLOSE with no parameters closes all open data
files

12-7

Examples

DISPLAY

178 CLOSE #2
250 A=6

29¢ CLOSE 3,5,A

1209 CLOSE

Characteristics

IF...

a CLOSE 1s executed

an END statement or a SYSTEM com-
mand 1s executed

a IsE NSIIW is issued

any modification is made to the
current program (line insertion,
line editing and so on...)

either a CHAIN statement or a LOAD
(RUN) command with the option R is
executed

COMMENTS

Statement 17¢ closes the file whose
file number is 2.

Statement 299 closes the files
whose file numbers are 3,5 and 6
(if A equals 6).

Statement 12¢@ closes all the
files

THEN. ..

the association between a file and
1ts buffer 1is deleted; that buffer
may now be reused to OPEN any file.

A CLOSEd file may be re-OPENed by
another OPEN statement (within the
same or another program) and any
free buffer may be associated with
the file

all OPENed data files are CLOSEd

all OPENed data files are CLOSEd,
and any data still in buffers, and
not yet written to disk will be
lost

all OPENed data files are CLOSEd

no OPENed data files are CLOSEd

DISK FILE HANDLING

a program interruption occurs (upon no OPENed data files are CLOSEd
execution of a STOP statement, or
wher an error message is issued, or

when the user presses HITW)

an attempt 1s made to CLOSE an the CLOSE statement has no effect
already CLOSEd or not yet OPENed

file

Remark

it 1is good programming practice to always CLOSE a file when you have
finished with it, unless you want to chain another program (by CHAIN or
RUN with the R option or LOAD with the R option) working on the same
files and with the same acces mode. A LOAD or RUN without the R option,
or a SAVE command close all open files.

WRITING A SEQUENTIAL FILE

To write a sequential file you must OPEN it in Output ("'0") or Append
(!lAil)-

Output statements are PRINT#, PRINT# USING and WRITE#,

PRINT# and WRITE# output standard format data, whereas PKINT # USING
Outputs data in a user defined format.

The difference between PRINT# and WRITE# is that:

- PRINT# writes data to a disk in the same format used by the PRINT
statement

- WRITE# writes data to a disk in the same format used by the WRITE
statement, i.e. inserting commas between data and quoting string values.

Note: LOC function may be used to know the number of sectors (256 byte
blocks) written to or read from the a file since it was OPENed, to avoid

a '"Disk full" error message.,

The following steps are required to write data to a sequential file,

12-9

STEP

OPERATION

Open the file, specifying
either "A", or "0" as ac-
cess mode

Write a series of numeric
and/or string values to
the file, using an output
statement

Repeat step 2 for each
output operation

When you have finished with
the file close it (unless
another CHAINed program
uses the file with the

same access mode)

PRINT # (PROGRAM/ IMMEDIATE)

EXAMPLES

18 OPEN "0",1,"1:F1"

5¢ WRITE#1,AS,B,CS

15¢ WRITE#1,A7,B1,C1$

180 WRITE#1,A2,B25,C2,D2

308 CLOSE#

Writes data to a sequential file, in the same way as the PRINT statement.

19 an

DISK FILE HANDLING

PRINT # ‘rfwlLlﬁnber —0@ T—*] expression |

Figure 12-3 PRINT# Statement:

Where
SYNTAX ELEMENT MEANING

file number 1s a numeric expression whose rounded value
specifies the number of the buffer associated
with the file

expression i1s a numeric, relational, logical or string
expression whose value is written to the file

Remark

An image of the data is written to the disk, just as it would be dis-
played on the screen with a PRINT statement. For this reason, care
should be taken to delimit the data on the disk, so that it will be input
correctly from the disk.

Characteristics
1F... THEN. ..

a PRIAT# statement is executed data 1s output sequentially to the
specified file

12-11

the file is OPENed for Qutput ("0'")

the file is QOPENed for Append ("A')

you want to set up your PRINT# list
correctly for access by one or more
INPUT# statements

you have to output numeric values
(resulting from the evaluation of a
numeric, relational or logical ex-
pression)

the file pointer is set to the
beginning of the file, therefore
your first PRINT# places data at
the beginning of the file.

For each PRINT# operation, the
pointer advances, so the values are
written in sequence

the file pointer is set to the end
of the file, therefore, your first
PRINT# places data after the last
data item on the file, For each
PRINT# operation the pointer ad-
vances, so the values are written
in sequence

remember that a PRINT# statement
creates a disk image similar to
that which a PRINT creates on the
screen.

PRINT# writes an ASCI1 coded image
of the data. The punctuation in the
PRINT# list is very important.

Unquoted commas and semicolons have
the same effect as they do in PRINT
statements

you may use both commas or semi-
colons to separate the expressions.

Generally you woulg not want to
waste disk space, so you should use

semicolons instead of commas.

For example:

DISK FILE HANDLING

you have to output string values

you have to output string values
which do not contain commas, semi-
colons, significant leading or
trailing blanks, carriage returns
or line feeds

LIST

18 OPEN “Q',#1,"DATA1"
20 A=1:B=2:C=3

3¢ PRINT#1,A;8B;C

49 CLOSE#

58 OPEN "1'',#1,"DATA1"
6@ INPUT#1,A1,B1,C1

78 PRINT A1;B1:C1

88 CLOSE#1
9@ END
Ok
RUN
1 2 3
Ok
3@ PRINT#1,A,B,C
RUN
1 2 3
Ok

If you separate the variables A,B
and C in statement 3¢ with commas
instead of semicolons the program
displays the same results but you
waste disk space.

With semicolons the disk image will
be:

With commas 1t will be:
1 2 3

you have to 1insert explicit de-
limiters, 1if you want to INPUT%#
them as distinct strings

use a comma as a string constant
(",") to separate string expres-
sions in the PRINT# statement. Thus
data items will be separated on the
disk by a comma and will be read
back as different strings by an
INPUT#statement.

12-13

For example:

LIST
19 OPEN "0",#1,""DATA1"
20 AS="CAMERA"

3@ B$="936@5-2"

49 PRINT#1,AS$:BS

5@ CLOSE#1

6@ GPEN ''1',#1,"DATAT"
78 INPUTH#1,A1$

88 PRINT A1$

9@ CLOSE#1

18@ END

Ok

RUN

CAMERA936@5-2

Ok

49 PRINT#1,AS;:",":BS
78 INPUT#1,A1$,B1$

8@ PRINT A1$,B1$

RUN

CAMERA 936@5-2
Ok

If you separate A$ and BS by a
semicolon in statement 4@, the disk
image will be:

CAMERA936@5-2

Because there are no delimiters
this cannot be input as two sepa-
rate strings. To correct the prob-
lem, 1insert an explicit delimiter
(",") into statement 4¢ and modify
statements 7¢ and 8¢ too. The disk
image will be:

CAMERA,936@5-2

This can be read back into two
string variables (see the new run)

DISK FILE HANDLING

you have to output string values
containing commas, semicolons,
significant leading or trailing
blanits, carriage returns or line
feeds

write them to disk and surround
them by explicit quotation marks,
CHRS(34).

For example:

LIST

1@ OPEN '"O',#1,"DATA1"

2 AS="CAMERA, AUTOMATIC"

3¢ BS=" 936@5-2"

4@ PRINT#1,AS:BS

5@ CLOSE#1

68 OPEN "1'',#1,"DATA1"

78 INPUT#1,A$,BS

8@ PRINT AS$;BS

9¢ CLOSE#1

199 END

Ok

RUN

CAMERAAUTOMATIC

Ok

4¢ PRINT#1,CHRS$(34):A$:CHRS(34);
CHRS$(34); BS;CHRS(34)

RUN

CAMERA, AUTOMATIC

Ok

936@5-2

936@5-2

Statement 4§ writes the following
image to disk:

CAMERA, AUTOMATIC 936@5-2
and statement 7@ inputs
CAMERA

to AS$ and
AUTOMATIC 936@5-2

to BS, as you can check by state-
ment 8@, when you run the program
for the first time. If you change

statement 4§ as indicated, you
write the following image to disk:

12-15

"CAMERA, AUTOMATIC'" 936@5-2"
and statement 7¢ inputs

"CAMERA, AUTOMATIC' to AS and

" 936@5-2" to BS, as you can
check by statement 8§, when you run
the program for the second time

PRINT# USING (PROGRAM/ IMMEDIATE)

Writes data to a sequential file in a user defined format in the same way
as PRINT USING statement displays data on the screen,

PRINT #

P4

| file
number

string

. 1
’ USING | expression H expression |

Figure 12-4 PRINT# USING Statement

Where

SYNTAX ELEMENT

file number

string expression

expression

MEANING

1s a numeric expression whose rounded value
specifies the number of the buffer associated
with the file

is the formatting characters fully described in
Chapter 7

is a numeric, relational, logical, or string
expression to be written to the file

DISK FILE HANDLING

Remarks

Care should be taken to delimit data items on the disk, so that -they will
be input correctly by an INPUT# statement.

For example, the statement:
PRINT#],USING”###nh##}”;A,B,C,D

could be used to write numeric data to disk without explicit delimiters.
The comma at the end of the format string serves to separate the items 1in
the disk file,

See Chapter 7 for full details of the facilities offered by the PRINT
USING statement.

WRITE# (PROGRAM/IMMEDIATE)

Writes data to a sequential file, in the same way as the WRITE statement
displays data on the screen. Each data item will be separated from the
preceding one by a comma. Strings will be delimited by quotation marks
("). After the last item in the list is written to disk, BASIC inserts a
carriage return/line feed.

| file »{ expression
WRITE # e ber —»@ pressi

Figure 12-5 WRITE# Statement

Where

SYNTAX ELEMENT MEANING
file number 1s a numeric expression whose rounded value

specifies the number of the buffer associated
with the file

19 1=~

expression 1S a numeric, relational, logical or string
expression to be written to the file

Remarks

[t is not necessary to put explicit delimiters in the list of a WRITE
statement

If you want to write a string to a disk file that contains a quotation
mark ("), you must use a PRINT# instead of a WRITE# statement. A
quotation mark may be inserted by the CHRS(34) in a string value which
does not contain commas, semicolons, significant leading or trailing
blanks, carriage returns or lipe feeds. A quotation mark may also delong
to a string variable whose value is assigneq by use of the RZLD ana JATA
statements, or by an INPUT (LINE INPUT, LNPUT#, LINE INPUT#) statemen<,

Example
DISPLAY COMMENTS
LiST Statement 4@ writes the following
1@ OPEN "0",1,"DATA2" image to disk:
2@ AS=""CAMERA"
30 B$="936@5-2" "CAMERA",''936@5-2"
48 WRITE 1,A$,BS
5@ CLOSE 1 Statement 7¢ inputs "CAMERA" to AS
69 OPEN "1, 1,"DATA2" and "'936@5-2" to BS, as you can
7@ INPUT 1,A$,BS check by statement 8¢
80 WRITE AS,BS
99 CLOSE 1
19@ END
Ok
RUN
"CAMERA", ''936@5- 2"
Ok
LoC

With sequential files, LOC returns the number of sectors (256 byte
blocks) read from, or written to the file, since it was OPENed.

DISK FILE HANDLING

LOC function may also be used with random files (see below).

o file)
@ number

Figure 12-6 LOC Function

Where
SYNTAX ELEMENT MEANING
file number 1s a numeric expression rounded to
the nearest integer. It is the
number of the buffer associlated
with the file
Example

208 1F LOC(2)> 3@ THEN STOP

READING A SEQUENTIAL FILE

To read a sequential file, you must open it in Input mode ("1,

INPUT# and LINE INPUT# statements allow you to read data from a sequen-
tial file, INPUT# reads one Oor more data items Séparated by delimiters
and assigns them to numeric and or string variables, LINE INPUT# reads an
entire line ang assigns it to a string variable.

Besides these two statements, BASIC allows you to use the following two
functions, which are very useful in handling sequential files:

following message to appear:

Input past end

- the LOC function which tells you the number of sectors (256 byte
blocks) read from or written to the file, since it was OPENed.

The following program steps are required to read data from a sequential
file.

STEP OPERATION EXAMPLES

1 open the file, specifying 1@ OPEN "'1'" #2,"DATA"
"1" as access mode

2 input a series of numeric
and/or string values from .
the file, using an INPUT# 5@ INPUT#2,X5,Y$,2
and/or a LINE INPUT#
statement

3 repeat step 2 for each in-
put operation (possibly :
testing for End Of File) 19@ INPUT#2,X1,X2,X3,X4

15@ INPUT#2,US$, WS

4 when you have finished
with the file, close it .
(unless another CHAINed 200 CLOSE#?2
program uses the file ‘
with the same access mode)

INPUT# (PROGRAM/IMMEDIATE)

Reads data items from a sequential file and assigns them to program
variables.

DISK FILE HANDLING

—>l INPUT# file —CG—O variable T
number

Figure 12-7 [INPUT# Statement

Where

SYNTAX ELEMENT

file number

variable

Remark

MEANING

1s a numeric expression whose rounded value
specifies the number of the buffer associated
with the file

is the name of a variable which will receive a
data 1tem from the file

Unlike INPUT, the INPUT# statement does not display a prompt (?) when it

is executed.

Characteristics

IF...

THEN. ..

an INPUT# statement is executed data is input sequentially from the

specified file. That is, when the
file is first opened, a pointer is
set to the beginning of the file.
Each time a data item is input, the
pointer moves to the next data
item. To restart reading from the
beginning of the file, close the
file and re-open it

19 "1

you want to input data successfully

BASIC 1s inputting to a numeric
variable

BASIC is inputting to a string
variable

the first character 1s a quota-
tion mark (")

12729

you need to know the type (numeric
or string) of each successive data
item on the file. Data items must
be separated by delimiters (see
below)

Note: Numeric items may be 1nput
Into string variables. If you input
a number into a string, use the VAL
function to get the numeric value,
to prevent mismatched type errors.

leading spaces, carriage returns
and line feeds are ignored. The
first character encountered that is
not a space, carriage return or
line feed 1is assumed to be the
start of a number. The number
terminates on a space, carriage
return, line feed or comma.

Note: Numeric conversions are val-
id. That 1s a numeric constant may
be assigned to a numeric variable
of different type, as with a LET,
an INPUT or a READ statement (see
Chapter 5)

leading spaces, carriage returns
and line feeds are also 1gnored.
The first character encountered
that is not a space, carriage
return, or line feed is assumed to
be the start of a string item

the string item will consist of all
characters read between the first
quotation mark and the second. The
quotation marks themselves do not
become a part of the string. (Thus,
a8 quoted string may not contain a
quotation mark as a character)

DISK FILE HANDLING

the first character is not a quota-
tion mark

the string is an unquoted string
and will terminate with a comma, or
carriage return, or line feed (or
after 255 characters have been
read).

For example, if the data on disk
is:

SUBROUTINES, SUBPROGRAMS "HOW TQ
CALL THEM?"

the statement:

INPUT#1,RS, S5, TS

will assign values as follows:
RS = SUBROQUTINES
S$ = SUBPROGRAM 'HOW TO CALL THEM?"

TS = null string

If you insert a comma on the disk
file before the first quotation
mark, 1i.e.

SUBROUTINES, SUBPROGRAMS, ""HOW TOQ
CALL THEM?"

the same INPUT# statement will
assign:

RS = SUBROUTINES

S$ = SUBPROGRAM

TS = "HOW TO CALL THEM?"

LINE INPUT# (PROGRAM/IMMEDIATE)

Reads an entire line (up to a carriage return) from a sequential file and

assigns 1t to a string variable.

file string
—{uneinpuT 5 }—ef Tle —'<>—‘ variable |

Figure 12-8 LINE INPUT# Statement

Where

SYNTAX ELEMENT

file number

string variable

Characteristics

IF...

MEANING
1s a numeric expression whose rounded value
specifies the number of the buffer associated

with the file

1s the variable name to which the line will be
assigned

THEN. ..

a LINE INPUT# statement is executed a line of string data 1is read into

the specified string variable.

LINE INPUT# reads all characters 1in
the file up to:

a carriage return, or

a carriage return/line feed, or
- the end of file, or
the 255th data character (this

255 character 1s included in the
string)

DISK FILE HANDLING

leading characters or other delim-
lters are encountered - quotation
marks, commas, blanks, and so on..

you want to read in data without
following the usual restrictions
regarding leading characters and
terminators

you want to read an ASCII - format

BASIC program file as data

Remarks

they are included in the string

use LINE INPUT# statements

use LINE INPUT# statements. (You
can write programs that edit other
ASCI1 programs; renumber them,
change LPRINTs to PRINTs, etc.)

LINE INPUT# reads all characters in the sequential file up to a carriage
return. It then skips over the carriage return/line feed sequence and the
next LINE INPUT# reads all characters up to the next carriage return (If
a line feed/carriage return sequence is encountered, it is preserved).

Example

DISPLAY

LIST

1@ INPUT "PROGRAM IDENTIFIER":P$
2@ OPEN "1',1,P$

3¢ K%=¢

4@ 1F EOF(1) THEN 8¢

50 K%=K%+1

6@ LINE INPUT# 1,AS

7@ GOTO 4¢

8¢ PRINT P$ ' 1S" K% "LINES LONG"

9% CLOSE
198 GOTO 19
119 END

Ok

RUN

COMMENTS

this program counts the number of
lines in an ASCII format program
file. £ach line ends with a car-
riage return/line feed, thus the
LINE INPUT# in line 6@ reads one
entire line at a time, into the
dummy variable A$. Variable K%
counts the lines of the program

PROGRAM IDENTIFIER? V1:P1
V1:P1 IS 35¢ LINES LONG
PROGRAM IDENTIFIER? V1:P2
V1:P2 1S 1528 LINES LONG
PROGRAM 1DENTIFIER?A C
Break in 19

Ok

EOF

Returns -1 (true) if the end of a sequential file has been reached.

Use EOF to test for end of file while INPUTting, to avoid “Input past
end'' errors,

(o)—(O—f
number

Figure 12-9 EOF Function

Where
SYNTAX ELEMENT MEANING
file number 1s a numeric expression rounded to the nearest
integer. It is the number of the buffer
associated with the file
Example

14 DIM A(S@)
2¢ OPEN "1",1,"DATA1"
39 FOR K%=@ TO 5¢

DISK FILE HANDLING

49 1F EOF(1) THEN 1¢¢
5@ INPUT#1,A(K%)
6@ NEXT K%

UPDATING A SEQUENTIAL FILE

To update a sequential file, read in the file and write out the updated
data to a new output file, as indicated by the following table.

STEP OPERATION
1 Open the sequential file to be updated for Irput
2 Open another new sequential file for Qutput
3 Input a list of data and update them as necessary
4 Output the updated data to the new file
5 Repeat steps 3 and 4 until all data has been read, updated and

output to the new file; then go to step 6

6 Close both files (unless you want to chain a program working on
the same files with the same access mode)

DEFINING A RECORD LAYOUT

After opening a random file you have to define the record layout by a
FIELD statement. FIELD organizes the random file buffer so that you can
pass data from the program to disk and vice versa. The record can be
divided up into any number of fields by a FIELD statement, but the total
number of bytes allocated in a FIELD statement must not exceed the record
length that was specified when the file was OPENed. Otherwise, a 'Field
overflow" error occurs. (The default record length is 256).

19 A~

The FIELD statement sets up the size of each of these fields and allows
string variable names to point to each field. These field names, unlike
ordinary strings which point to an area in memory called "string space",
point to the buffer area associated with the file.

All data, both strings and numbers, must be placed into the buffer in
string form. There are three pairs of functions (MK1S/CVI, MKSS/CVS,
MKDS/CVD) for converting numbers to strings and vice versa.

Note: Do not use a field name in an INPUT statement, or on the left side
of a LET statement. That name will no longer point to the buffer field

(but to the string space); therefore, you will not be able to access that
field using the previously assigned field name.

FIELD (PROGRAM/IMMEDIATE)

Defines fields in a random file buffer.

file | | fieid | field
FIELD # number) width AS name

Figure 12-10 FIELD Statement

Where
SYNTAX ELEMENT MEANING

file number 1s a numeric expression whose rounded value
specifies the number of the buffer associated
with the file

field width 1s the number of bytes to be allocated to the
field. One byte correspords to one characters of
data

field name is the string name to be assigned to tne LG

fiel
defined by the imnediately praceaaing fizlg
width

DISK FILE HANDLING

Examples
DISPLAY COMMENTS
2@ FIELD#1,15 AS NAMES,208 AS C§, Statement 20 allocates the first 15
10 AS PS positions (bytes) of the random
file buffer#1 to the name NAMES,
. the next 2@ to C$ and the (last) 1@
80 NAMES$=3$ (Wrong) to P§.

. After executing statement 8@ NAMES
190 LSET NAMES=BS (Right) becomes an ordinary string variable
naine. You will not be able to
uccess the first field of the
buffer any more.

Use statement 1¢@ instead (see
LSET/RSET statements below)

39 FIELD#2,128 AS N1$,128 AS N2$ You may wuse FIELD any number of
times to 're-organize'" a file
buffer.

180 FIELD#2,128 AS N3$,190 AS N4$, Re-organizing a buffer by a FIELD

28 AS NS statement does not clear the con-
tents of the tuffer; only the
means of accessing the buffer
(the field names) are changed.
Thus two or more field names can
reference the same area of the buffer

50 FIELD#3,16 AS K$(1),112 AS L$(1) You may use a dummy variable in a

FIELD statement to ''pass over' a

. portion of the buffer and start

9@ FIELD#3,128 AS DUMMYS, fielding it somewhere in the
16 AS K$(2),112 AS LS(2) middle.

In the second FIELD statement,

DUMMYS serves to move the starting
position of K$(2) to position 129

Remarks

It 1is good programming practice that the sum of all the field widths
equals the record length specified by the OPEN statement. In any case

19 20

this sum must not be greater than the record lenght, otherwise a "Field
overflow' error occurs.

WRITING RECORDS TO A RANDOM FILE

To write records to a random file, you must open it, specifying "R" as
access mode.

The PUT-File statement allows you to write a record to a random file. The
contents of the record must have been prepared within the random buffer
before executing the PUT-File statement by LSET or RSET statements. LSET
and RSET move data from memory to the random file buffer by allocating
string expressions to the field names previously defined.

If the string expression uses less bytes than you had allocated in the
FIELD statement the extra space allocated is padded with blanks. These
blanks can be set to be on the left or the right of the string expression
value. Left justification (see the LSET statement) starts at the first
position of the field. Right justification (see the RSET statement)
finishes at the last position of the field. When you have to transfer
numeric values into the buffer you must convert them to strings by the
MKLS, MKSS and MKDS functions.

Note: The LOC function either returns the record number written from a
PUT-File statement or gets the record number just read from a GET-File
statement.

The following program steps are required to write records to a random
file.
STEP OPERATION EXAMPLE
1 open the file, specifying 1¢ OPEN "R'",#1,"1:DIR", 22
"R'" as access mode and
(optionally) the record

length

2 field the buffer 2¢ FIELD#1,15 AS AS$,5 AS BS,
2 AS CS

12-2N

DISK FILE HANDLING

3 insert data into the
buffer

4 write a record to the file

5 to write another record

continue at step 3. Other-
wise, go to step 6

6 close the file (unless you
want to chain a program
working on the same file
with the same access mode)

198 LSET AS="JOHN JONES"
119 LSET BS="U.K."
129 LSET CS=MK1$(1%)

13¢ PUT 1,5

154 CLOSE#

LSET/RSET (PROGRAM/IMMEDIATE)

LSET stores a string value in a random buffer field left justified, or
left justifies a string value in a string variable

RSET stores a string value in a random buffer field right justified, or
right justifies a string value in a string variable.

string

LSET

field -
name

RSET

string
varable

Figure 12-11 (SZIT/RSZT Statements

expression |

MKIS

numeric
MKSS (| expression)

MKOD$

DISK FILE HANDLING

Where

SYNTAX ELEMENT

field name

string variable

MK1S/MKS$/MKDS

string expression

numeric expression

Examples

D1SPLAY

MEANING

1s a string variable name which specifies the
name of a field of a random buffer

the name of an ordinary string variable
the 'make' function which converts an integer
(MK1$), or a single (MKSS$), or a double (MXD$)

precision value to a string value

the string to be left or right justified in a
given field

the numeric value to be converted to g string
and left or right justified in a given field

COMMENTS

19 OPEN "R',#1,"1:MYFILE/MYPASS",2¢ Statements 3¢ and 4¢ put the data
2@ FIELD#1,1¢ AS N1$,1¢ AS N2§ in the buffer #1 as follows:

3¢ LSET N1$="CHARLES"

49 LSET N2$=""JAMES" N1$
. CHARLES
10@ RSET N1$=""CHARLES"
119 RSET N2$=""JAMES"
N2$
20@ LSET N1$=""CHARLES THOMSON" JAMES

12-32

Statements 1¢@ and 119 put the cata
in the buffer as follows:

N1$

CHARLE%

DISK FILE HANDLING

11¢ AS=SPACES(2¢)
12¢ RSET AS$=N$

N2$

JAMES

Statement 2¢@ put the data in the
buffer as follows:

N1$

CHARLES TH

Note: If a string is too long to
fit in the specified buffer field,
1t 1s truncated on the right,
irrespective of whether LSET or
RSET was specified.

LSET and RSET can also be used with
a non field wvariable to left
justify or right justify a string
in a given field., This can be a
useful formatting technique when
printing output.

In the example on your left RSET

right justifies the string N$ in a
2@-character field

MK1S$/MKSS/MKDS

These functions change a number to a string.

MK1S$ converts an integer to a 2-character string

199 29

DISK FILE HANDLING

MKS$ converts a single precision value to a 4-character string

MKD$ converts a double precision value to an 8-character string

ED—O—| n
expression

Figure 12-12 MKIS$ Function

single

MKS$ 0 precision —o@—-.
expression

Figure 12-13 MKS$ Function

double
MKD$ 0 precision _.®__,
expression

Figure 12-14 MKD$ Function

Examples

DISPLAY COMMENTS
3@ LSET DS=MKIS$(1%) Field name D$ would now contain a

two byte representation of the
integer 1%

DISK FILE HANDLING

189 STR4ACS=MKSS(SPV)

A "make" function is not confined
to use with the LSET and RSET
statements. Here SP\' is the name of
a single precision variable, which
is converted into a 4 character
string and assigned to the STR4CS
variable

PUT-File (PROGRAM/IMMEDIATE)

Writes data from a random file buffer to a random file.

Lol EmHo =1

number number

Figure 12-15 PUT-File Statement

Where

SYNTAX ELEMENT

file number

record numper

MEANING

1s a numeric expression which specifies the
number of the buffer associated with the file

1S a numeric expression which specifies the
record number in the file. The smallest record
number is 1, the largest 32767. 1f this
parameter is omitted, the current record number
is assumed.

Note: The current record is the record whose
number 1s one higher than that of the last
record accessed. The first time you access a
random file the current record number is set
equal to 1

Example

DISPLAY

LIST

1@ OPEN ''r'',1,"1:RAND",48
2¢ FIELD 1,29 AS R1$,20 AS R2$,8 AS R3$
39 FOR L=1 TO 4

4@ INPUT '"name'';N$

5¢ INPUT "address';M$
6@ INPUT "'phone';P#
78 LSET R1$=N$

8@ LSET R2$=M$

99 LSET R3$=MKSS$(P#)
19¢ PUT 1,L

118 NEXT L

128 CLOSE 1

138 END

Ok

RUN

name? super inan
address? USA

phone? 11234621

name? robin hood
address? England
phone? 2346211

Ok

COMMENTS

Statement 1¢ opens the random
file RAND, with a record length
of 48 on the diskette mounted in
drive 1. The file number is 1.
Statement 2¢ divides the buffer
into fields.

Statement 100 writes a record to
file RAND, with the record
number being set by the control
variable of the FOR/NEXT loop

DISK FILE HANDLING

With random files,

the LOC function cither

LOC

gets the record number just

read from a GET-File statement, or returns the record number just written

from a PUT-File statement.

file
number

Figure 12-16 LOC Function
Where

SYNTAX ELEMENT

file number

Example

DISPLAY

1@ OPEN '"R™,2,"TOWNS", 8¢

2@ FIELD 2,20 AS F15,2¢ AS F23,
20 AS F3$, 2@ AS F4$

3@ Y=1

19@ AS="MILAN "
119 GET 2,Y

12¢ Y=Y+1

13¢ 1IF F1$=AS$ THEN PRINT

MEANING

1s a numeric expression rounded to

the nearest integer. It is the
number of the buffer associated
with the file

COMMENTS

here F1S is a field name. If F1$
matches AS$, the record number in
which it was found is displayed

"FOUND IN RECORD';LOC(2):
CLOSE:END
14¢ GOTO 11¢

Remark

Lf the file is open, but no disk 1/0 has been performed yet, LOC returns
the value .

READING RECORDS FROM A RANDOM FILE

To read records from a random file you must open it, specifying 'R as
access mode. The GET-File statement allows you to read a record from a
random file. GET-File specifies both the file number and the number of
the record to be read. When executing a GET-File, the contents of the
specified record is transferred into the file buffer.

To access a single data item stored 1n the buffer (field name) you may
use either:

- a LET statement (if you want to assign it to a program variable), or

- a PRINT, PRINT USING, LPRINT, or LPRINT USING statement (if you want to
display or print it)

Note: If you have to assign, display or print a field name to be con-
verted to a number you must convert it using a CVI, or CVS or CvD

function.

Note: The LOC function returns the number of the record just read by a
GET-File or written by a PUT-File statement.

The following program steps are required to read data from a random file,

172-38

DISK FILE HANDLING

STEP OPERATION

1 open the file, specifying
"R" as access mode and
(optionally) the record
length

2 Structure the buffer by a
F1ELD statement

3 Read a record from the
file (variable A contains
the record number).

4 extract data from the
buffer by elther a LET or
a PRINT (PRINT USING)
statement. Numeric values
(stored in string format
within the buffer) must be
converted to numbers using
the ‘'convert" functions:
CV1, CVS and CVD

5 to read another record,
continue at step 3. Other-
wise, go to step 6

6 close the file (unless you
want to chain a program
working on the same file)

EXAMPLES

1¢g OPEN "R',#2,"1:DIR",22

20 FIELD#2,15 AS AS,5 AS B$,2 AS CS

10@ GET#2,A

1@ A15=AS
12¢ PRINT BS
13@ 1%=CV1(C$)

5@@ CLOSE#

Note: 1In a program that performs both input and output on the same random

file, you can often use just one OPEN statement and one F1ELD

Reads a record from a random file.

statement.

GET-File (PROGRAH/IHHEDIATE)

12-39

@ @ L file y | record l .

number number

Figure 12-17 GET-File Statement

Where
SYNTAX ELEMENT MEANING
file number 1s a numeric expression, whose rounded value
specifies the number of the buffer associated
with the file
record number s a numeric expression whose rounded value
specifies the number of the record to be read
(i.e. transferred to the buffer). If omitted,
the current record is read.
The smallest record number is 1, the largest
32767
Note: The current record 1is the record whose
number 1s one higher than that of the last
record accessed. The first time you access a
random file (without specifying a record number)
the current record number is set equal to 1
Examples
DISPLAY COMMENTS
L1IST This program retrieves informa-
19 OPEN ''r'',1,"1:RAND", 48 tion stored 1in the specified
20 FIELD 1,20 AS R1S$,20 AS R2$,8 AS R3S file. The data read into <the
3¢ FOR L=1 TO 4 buffer may be accessed by the
44 GET 1,L program. This is done here by a
5@ PRINT R1$,R2S$,CVD(R3S) PRINT statement (see statement

6@ NEXT 5¢).

DISK FILE HANDLING

79 CLOSE 1 These data items were written to
8@ END the file by the PUT-File state-
Ok ment.

RUN

Super man USA 11234621

robin hood gngland 23462191

Ok

Cvi/cvs/cvo

Convert string values to numeric values.

CVl converts a 2-character string to an integer

CVS converts a 4-character string to a single precision number
CVD converts a 8-character string to a double precision number

C—O~— G
string

——————

2 byte
field name

Figure 12-18 CVI Function

R —

| 4 byte
cvs (string)

4 byte
field name

Figure 12-19 (VS Function

8 byte

CVD (string

8 byte
field name

Figure 12-20 CVD Function

Examples

18 ¥#=CVD(NY)
2@ Y'=CVS(R1S)

UPDATING RECORDS OF A RANDOM FILE

To update a random file, read in each record to be updated and rewrite
1t, as indicated by the following table.

STEP OPERATION
1 open the random file
2 divide the buffer into fields
3 read the record to be updated
4 extract data items from the buffer to display them or assign

them to program variables

5 insert new values into the buffer fields

6 write the updated record

7 to update another record, continue at step 3. Otherwise, go to
step 8

8 close the file (unless you want to chain a program working on

the same file)

DISK FILE HANDLING

Example

DISPLAY

LIST

1¢ OPEN "r',1,"1:filetext",128
2¢ FIELD 1,128 AS AS

3¢ INPUT '"record number ";RNUM
4¢ GET 1,RNUM

5¢ PRINT AS

6@ INPUT ''give me data ";PP$
7¢ LSET AS=""mew data --"'+PP$
8¢ PUT 1,RNUM

9@ INPUT '"CONTINUE (y/n) '";RS
19¢ 1F RS="y' THEN 3¢

11¢ CLOSE

Ok

RUN

record number ? 1

new datapoloo

give me data ? gio

CONTINUE (y/n) ? vy

record number 7 1

new data --gio

give me data ? pol

CONTINUE (y/n) ? n

Ok

COMMENTS

Statement 10 opens a random file,
called filetext and residing on the
diskette mounted in drive 1.

Statement 2@ specifies only one
field name in this case .

Statement 4¢ reads the record to be
updated, whose number 1s entered
via keyboard by statement 34.

Statement 5@ displays data from the
buffer.

Statement 7¢ inserts new values
into the buffer field, chaining the
string variable PP$ to the string
constant ''mew data "

Statement 8@ writes the updated
record.

Statements 9¢ and 19@ allow you to
continue or to stop.

Statement 118 closes the file

17242

13. DEBUGGING AND ERROR RECOVERY

ABOUT THIS CHAPTER

This chapter describes the statements, and some of the techniques, used
for diagnosing and correcting errors (bugs).

CONTENTS

TYPES OF ERRORS 13-1
TRACING PROGRAM EXECUTION 13-2
TRON/TROFF 13-2

(PROGRAM/IMMEDIATE)

INTERRUPTING PROGRAM 13-3
EXECUTION

END (PROGRAM) 13-4
STOP (PROGRAM) 13-4
CONT (IMMEDTATE) 13-5

ERROR TESTING AND RECOVERY 13-7

ERROR (PROGRAM/IMMEDIATE) 13-8
ON ERROR GOTO (PROGRAM) 13-9
ERL/ERR 13-11

RESUME (PROGRAM) 13-13

DEBUGGING AND ERROR RECOVERY

TYPES OF ERRORS

Even accomplished Programmers can rarely write an error-free program at
the first attempt. There are, in general, two types of errors that can be
made (excluding errors made when entering a line which have already been
described in Chapter 1):

- run-time errors, which halt execution and cause an error message

- logic errors, which permit complete execution, but cause incorrect or
unexpected results.

The process of finding the cause of an error (often called a "bug") 1is
termed '"debugging'. The M20 provides a number of features that reduce the
cost and frustration of debugging.

TYPES OF ERRORS COMMENTS
Run-time errors (i.e. They may be Syntax errors (when a line contains
errors detected by the some 1incorrect sequence of characters) or other
M20 when executing a types of run-time errors (NEXT without FOR,
program or an immedi- RETURN without GOsSuB, etc...).
ate line) You can also simulate the occurrence of a BASIC

error, or generate a user defined error type (to
be handled by an error trap routine). See ERROR
and ON ERROR GOTO statements below.

Logic errors (i.e. These errors are the most difficult to find. To
errors that permit give a simple example, assume you have written a
complete execution, program that is supposed to print the results of
but cause incorrect 15 calculations. When the program is run, only

or unexpected results) 11 results are printed. Obviously something 1is
wrong, but 1if the program is long and complex,
with many branches, loops and subroutines,
finding the error is not a simple task. Perhaps
you have transferred control to a statement you
did not intend to and some calculation is not
being performed. You could have gone wrong in
many ways. In such cases, the ability to trace
exactly which statements are being executed -
and when - would be very useful.

TRACING PROGRAM EXECUTION

A convenient method of debugging logic errors is to trace the order of
statement execution in all or part of a program. The M20 provides the
following two tracing commands (they may also be used as program state-
ments):

TRON/TROFF (PROGRAM/IMMED1ATE)

TRON (TRACE ON) causes the line number of each statement executed to be
listed.

TROFF (TRACE OFF) stops the line number listing initiated by TRON.

Figure 13-1 TRON Command

Figure 13-2 TROFF Command

DEBUGGING

Example

TRON

Ok

LIST

19 K=19

AND ERROR RECOVERY

DISPLAY

2@ FOR J=1 TO 2

3¢ L=K+1¢

4@ PRINT J:K:L

50 K=K+1¢@
6@ NEXT
78 END
Ok

RUN

9] (2]
(58 [
(58] [60]
Ok

TROFF

Ok

(3¢] [4g] 1
(39] [ag]
(70]

9 20
2 20 3¢

INTERRUPTING PROGRAM EXECUTION

A program is interrupted if:

- you press AW R, or

COMMENTS

TRON sets the trace flag that
displays each line number of the
program as it 1is executed. The
numbers appear enclosed in square
brackets.

The numbers which are not enclosed
in square brackets (in the example)
are the output of the statement

49 PRINT J;K;L

The trace flag is set to off with
TROFF (or when 2 NEW command is
executed).

- a STOP or END statement is executed, or

- an error message is displayed.

In any of the above mentioned cases, the M20 enters Command Mode, (except

in the case of a Syntax error when M20 enters Edit Mode).

If you are in

Command Mode, you may display program variables (by immediate PRINT or
PRINT USING statements) or change their values (by immediate LET or SWAP
You can continue execution by entering a CONT command
(except when an error is encountered, or if vyou modify the program).

statements.

13-5

END (PROGRAM)

Interrupts program execution, closes all data files and returns to Com-
mand Mode.

Figure 13-3 END Statement

Remarks
Although it is not essential for a program to finish with an END state-
ment, it is useful in that it closes all open files, and it enhances

readability. The END statement is also useful in enabling the program to
be terminated at the end of a branch. For example:

25 1F Z>190¢ THEN END

END statements may be placed anywhere in the program to terminate exe-
cution.

Unlike the STOP statement, END does not cause a BREAK message to be
displayed. The execution of an END statement always causes a return to
Command Mode. You may display the values of Program variables by an

immediate PRINT (or PRINT USING) statement, anc you may resume execution
by a CONT command (but take care as all files have been closed).

STOP (PROGRAM)

Interrupts program execution and returns to Command Mode.

Figure 13-4 STOP Statement

DEBUGGING AND ERROR RECOVERY

Remarks

Like END, a STOP statement can be used anywhere in a program. When a STOP
1s encountered, the following message is displayed:

Break in line nnnnn
Unlike the END statement, the STOP statement does not close files.

BASIC always returns to Command Mode after a STOP is executed. Execution
1s resumed by issuing a CONT command (see below).

Example
DISPLAY COMMENTS

LIST Statement 3@ allows you to check and observe the
19 INPUT A,B,C first value of X before the second is calculated
20 X=A*B and displayed.
3@ STOP
48 X=x/C Although in such a simple case the STOP state-
5@ PRINT X ment does not appear very useful, it can be very
6@ END useful in larger programs: by entering a STOP at
Ok the end of a branch, for example, the program
RUN will only stop if the branch is used. It also
? 4,3,6 enables you to change some variables before the
Break in 3¢ program is CONTinued: a useful diagnostic test.
Ok

PRINT X When the program has been sufficiently testec,

12 you have to delete all the STOPs inserted for
Ok debugging and RENUMber the program.

CONT

2
Ok

CONT (IMMEDIATE)

Continues program execution after either a has been entered,
or @ 5STOP or an END statement encountered.

Execution resumes at the point where the break occurred.

Figure 13-5 CONT Command

Characteristics

IF...

you press

CTRL after a

prompt from an INPUT
statement

elther a STOP is en-
countered or and END
statement

THEN. ..

execution continues with the reprinting of the
prompt (? followed by a blank, or prompt
string).

intermediate values may be examined and changed
using immediate statements (PRINT, PRINT USING,
LET, SWAP).
Execution may be resumed with CONT or an immedi-
ate GOTO, which resumes execution at a specified
line number. (Entering RUN 1line number instead
of GOTO line number will clear all program
variables.)
For example:

1@ INPUT A,B,C
20 K=AA 2%5.3:L=BA 3/.26
3@ STOP
4@ M=C*K+1@@:PRINT M
RUN
21,2,3
Break in 3§
Ok
PRINT L
39.7692
Ok
CONT
115.9
Ok

DEBUGGING AND ERROR RECOVERY

the program has been CONT 1is invalid
edited during the
break
OR
ar error is issued

ERROR TESTING AND RECOVERY

Normally, when an error is éncountered, BASIC handles the error by hal«-
1ng execution and displaying an appropriate message. In rthe case of a
syntax error, the M20 goes into Edit Mode. 1n all other cases the M20
goes into Command Mode.

Often the user wants the handling of a particuler error to be different
from this. This is accomplished by Wwriting his own er~cr-handling
routine,

Through use of the ON ERROR GOTO statement, error handling routines can
be entered so that execution continues with the specified line after an
error occurs. Only one error handling routine may be active at any given
time.

Execution of an ON ERROR GOTO @ outside an error handling routine
disables error trapping.

Execution of an ON ERROR GOTOQ § inside an error handling routine
specifies normal error-handling for any error which the routinre does rot
handle.

Ahen an error occurs and the error trapping has been enabled, execution
1s transferred to the specified line. Then the ERR and ERL functions
could be tested and error recovery procedures could be executed. The ERR
function contains the error code, the ERL functiun contains the line
number of the line in which the error was detected.

A user-error handling routine should check for all the particular errors
tne user wishes to recover from, and indicate what - to do in each case.
This usually involves cor-zcting the error, and resuming execution at +he
statement where the error occurred, rather than returning to Command
lode.

Plyure o=y

ERROR (PROGRAH/IHHEDIATE)

UN CRRUK QUIU Statement

Simulates the occurrence of a BASIC error, or generates a user defined
error,
numeric
ERROR expression

Figure 13-6 ERROR Statement

Where

SYNTAX ZLEMENT

Aumeric expression

Characteristics

IF.

the value of the
numeric expression
equals an error code
already in yse by
BASIC (see Appendix F)

13-8

MEANING
the value of the numeric expression
dn error code,

[t must be greater than
to 255, If it is not an
to the nearest integer,

represents

and less than or equal
Integer, it 1s rounded

Note: BASIC does not use all the error codes
available. The Initialised €rror codes display

the message

THEN. ..

the ERROR statement will] simulate the occurrence
of that €rror, and the corresponding error
message will pe displayed.

For example:

LIST

19 S=17

2¢ T=5

30 ERROR 5.T

DEBUGGING AND ERROR RECOVERY

44 END

Ok

RUN

String too long in line 3¢
Ok

Or, in immediate mode:

ERROR 15
String too long
Ok
the value of the the ERROR statement will generate a user-defined
numeric expression error. This user-defined error code may then be
1s grecater than any handled in the error handling routine (see ON
used by BASIC error ERROR GOTO below).
codes
Note: To define your own error, use a value thar
1s greater than any used by BASIC error codes.
(It is preferable to use the highest available
values, so compatibility may be maintained 1if
more error codes are added to BASIC).
an ERROR statement BASIC responds with the message:
specifies a code for
which no error mes- Unprintable error

sage has been defined

ON ERROR GOTO (PROGRAM)

Enables error handling and specifies the first line of the error handling
routine. (Each BASIC program may only have one active error handling rou-
tine at any given time.)

| line
—»@N ERROR GO@—* nomber

Where

SYNTAX ELEMENT

line number

Example

DISPL

118 ON ERROR GOTO 4¢g
12¢ INPUT "WHAT 1S YOUR 3
130 1F B > 5¢@¢ THEN ERRO

439 1F ERR=21¢ THEN PRINT

MEANING

1s the first line of the error handling routire.
It must be greater than § and less than or equal
to 65529,

Note: The statement ON ERROR GOTO # does no+
;;ggle error ftrapping at a routine whose first
line 1is zero, but, rather it disables error
trapping. Thus, if ON ERROR GOTOQ 9 is within the
error handling routine and that statement 1s
reached with an error still pending, then the
standard error message is displayed and Command
Mnde 1Is entered.

AY COMMENTS

If you enter a valye of
E greater than spgy,
the message:

T8 HOUSE LIMIT 1S $5p4¢

R 219
Is displayed an- axe-
cution resumes at 12,

If any other error is
"HOUSE LIMIT 1S $5¢gg" éncountered statement

41Q IF ERL=13¢ THEN RESUHE ng 42¢ causes the Standard

423 ON ERROR GOTO ¢

13-10

(rror message to be
Iisplayed.

DEBUGGING AND ERROR RECOVERY

Characteristics

IF. ..

Error trapping has
been enabled

Line number does not
exlst

an ON ERROR GOTO # 1is
executed

an ON ERROR GOTO @ 1is
executed within an
error trap routine

an error occurs during
execution of an error
handling routine

Remark

THEN. ..

all errors detected, including immediate moce
errors, will cause a jump to the specified error
handling routine.

an "Undefined line' message is displayed.

efror trapping is disabled. Subsequent errors
will display a standard error message and halt

execution.

BASIC displays the standard error message for
the error which caused the trap and stops.

Note: It is recommenced that all error handling
routines execute an ON ERROR GOTO @, if an error
1s encountered for

which there 1is no recovery
action.
the BASIC error message 1is displayed and

execution terminates. Error trapping cannot be
activated within an error handling routine.

"Overflow' and 'division by zero'" errors cannot be trapped.

ERL/ERR

When an error occurs the ERL function returns the line number of the line

in which the error was detected,

code.

and the ERR function returns the er-ror

1211

line
ERL @-_‘ number

Figure 13-8 ERL Function

—0—@—0{EH-@—

Figure 13-9 ERR Function

Characteristics

The ERL and ERR functions are usually used in 1F...THEN...ELSE or IF...
GOTO...ELSE statements to direct program flow in the error handling

routine.

IF. ..

the statement that
caused the error was
an immediate state-
ment

the line number 1is
not on the right side
of the relational
operator

THEN. ..
ERL will contain 65535.
To test 1if an error occurred in an 1immediate
statement, use:
IF 65535=ERL THEN...

Otherwise, use:

1F ERR error code THEN...
IF ERL = line number THEN...

1t cannot be renumbered by RENUM.

DEBUGGING AND ERROR RECOVERY

Example

DISPLAY

LIST
19 REM RECTANGLEZ
2@ ON ERROR GOTO 79
3¢ INPUT '"Length and Width'";L,W
4@ 1F (L< @) OR (W< @) THEN ERROR 204
5§ PRINT “Area=";L*W;" L="";L;" W="";W
¢ GOTO 3¢
7¢ 1F (ERR=2@@) AND (ERL=49)
THEN PRINT "L or W<@":RESUME 38
8¢ ON ERROR GOTO ¢
9@ END
0k
RUN
Length and Width? -2,5
L or W<@
Length and Width? 2,5
Area= 1§ L= 2 W= 5
Length and Width? AC
Break in 3@
Ok

Remarks

COMMENTS

I[f you enter a negative
value for L or W, the
error handling routine
1s activated and the
system displays:

L or W<@

Execution 1s resumed at
statement 3@ (see RE-
SUME statement below).
Note the use of ERR and
ERL functions in the
error handling routire.

These functions can also be used as regular BASIC functions.

For example:
PRINT ERR
PRINT "Too big', ERL

% = ERR

RESUME (PROGRAM)

Resumes executicn after the error handling routine has been entered.

13-13

RESUME 0 1

NEXT

line
number

Figure 13-1C RESUME Statement

Where

SYNTAX ELEMENT

NEXT

line number

Remark

A RESUME statement that

MEANING
Execution will resume at the statement which
caused the error.

Note: RESUME @ and RESUME are equivalent

Execution will resume at the fir-st statement
after the one causing the error

Execution will resume at the specified line
number

is not within an error handling routine causes a

"RESUME without crror' message to be displayed.

DEBUGGING AND ERROR RECOVERY

Examples

DISPLAY

LIST

19 REM RECTANGLE3

2@ ON ERROR GOTO 79

3¢ INPUT "Length and Width'';L,W

48 1F (L<@) OR (W<@) THEN ERROR 2904

5@ PRINT "Area=";L*W;" L="";L;" W="";W

6@ GOTO 3¢

7@ 1F (ERR=20@) AND (ERL=4@) THEN RESUME

8¢ ON ERROR GOTO ¢

9@ END

Ok

RUN

Length and Width? -2,5
AC

Ok

70 1F (ERR=2@@) AND (ERL=4@) THEN RESUME NEXT
RUN

Length and Width? -2,%

Area=-19 L=-2 W= 5

Length and Width? AC

Break in 3¢

Ok

7¢ 1F (SRP=2@@) AND (ERL=49) THEN RESUME 3¢
RUN

Length and Width? -2,5

Length and Width? 2,5

Area= 18 L= 2 W= 5

Length ana Width? AC

Break 1in 3¢

Ok

COMMENTS

If you enter a negative
value for L or W, the
error handling routine
1s activated. In this
case the routine re-
sumes executlon at the
statement which caused
the error, thus an
endless loop 1is er-
tered.

To stop execution
press:

CTRL B C |

Correcting line 79 1in
this way, the error 1is
'ignored'.

Correcting line 7§ in
this way, the error
handling
sumes execution at
statement 3(.

routine re-

14. GRAPHICS

ABOUT THIS CHAPTER

This chapter provides an introduction to the graphics facilities avail-
able with BASIC on the M20. On a computer, 'graphics' is the way informa-
tion 1s conveyed in 'picture' form. This chapter explains how to execute
graphics operations on the M20; the term 'graphics' covers any combina-
tion of text and geometric forms.

CONTENTS

[NTRODUCTION

WINDOWS

OPENING WINDOWS

WINDOW - TO OPEN A
WINDOW (PROGRAM/IMMEDIATE)

WINDOW - TO SET WINDOW
SPACING (PROGRAM/IMMEDIATE)

USING THE WINDOWS

WINDOW TO SELECT A
WINDCW (PROGRAM/IMMEDIATE)

COLOR - GLOBAL COLOUR

SET SELECTION
(PROGRAM/1MMEDIATE)

COLOR (PROGRAM/IMMEDIATE)
CLS (PROGRAM/IMMEDIATE)

SCALE (PROGRAM/TMMEDIATE)

SCALEX

14-1

14-2

14-3

14-3

14-6

14-9

14-10

14-11

14-13

14-14

14-15

14-18

SCALEY

CLOSING WINDOWS

CLOSE WINDOW
(PROGRAM/IMMEDIATE)

DISPLAYING CURSORS

CURSOR (PROGRAM/IMMEDIATE;
POS (PROGRAM/IMMEDIATE)

ORAWING LINES, RECTANGLES,

AND CIRCLES

LINE (PROGRAM/IMMEDIATE)

CIRCLE (PROGRAM/IMMEDIATZ)

ODISPLAYING POINTS AND
PAINTING FIGURES

PSET (PROGRAM/IMMEDIATE)

PRESET (PROGRAM/IMMEDIATE)

PAINT (PROGRAM/IMMEDIATE)

14-19

14-20

14-20

14-21

14-21

14-24

14-25

14-29

14-37

14-32

14-32

14-33

POINT (PROGRAM/IMMEDIATE)

SPECIAL STATEMENTS

GET - Graphics
(PROGRAM /IMMEDIATE)

PUT - Graphics
(PROGRAM/IMMEDIATE)

DRAW (PROGRAM/IMMEDIATE)

GRAPHICS FACILITIES
PROVIDED BY PCOS

14-36

14-37

14-37

14-39

14-472

14-45

14-111

GRAPHICS

INTRGDUCTION

There are two types of screen available with the M20: one has a black and
white display, the other a colour display. For both displays you can
select either a 512 x 256 or a 48§ x 256 pixel screen display (256
scanlines of either 512 or 48§ pixels, where the term pixel 1s a contrac-
tion of ''picture element” and scanline is a row of pixels).

In a black and white system there exists in memory one Bit Map where each
bit corrisponds to a pixel (bit = @ for black, bit = 1 for white).

A colour system may be either a 4-colour or an 8-colour system, depending
on whether 4 or 8 concurrent colours are permitted.

In a 4-colour system there are two superimposed Bit Maps, where each pair
of bits corresponds to a pixel. Thus, four possible colour numbers may be
associated with each pixel as two bits may generate the number g, 1, 2
and 3.

In an 8-colour system there are three superimposed Bit Maps where each
three bits corresponds to a pixel. Thus, eight colour numbers may be

associated with each pixel as three bits may generate the numper ¢ to 7.

The maximum dimensions of the video image is 225 mm by 140 mm.

—

512 ‘pixels’) - 480 ‘pixels’

>

‘pixels’
pixels

1 ——)

Figure 14-1 Display Modes (512 x 256 or 488 x 256)

ﬂl

256
2

Each line of text on the video can contain either 64 or 8¢ characters.
The space between lines can also be varied: a screen can display from 16
lines (minimum) to 25 lines (maximum) .

With the 4-colour version of the video, characters and graphics can be

14-1

displayed using four colours, selected from the eight colours provided
with the system. With the 8-colour version, characters and graphics can be
displayed using all the eight colours simultaneously. The eight colours
are: black, green, blue, cyan, red, yellow, magenta and white.

With a colour display the background colour 1s normally black and the
foreground colour (the colour 1in which characters and graphics are
displayed) 1is green. For the black and white display the background 1s
normally black and the foreground white. You can alter these values to
sult your needs; later on in this chapter there 1is a description of how
these values can be changed (see the COLOR statement). For black and
white videos your only option 1s to reverse the normal method of
characters or graphics display (providing black characters/graphics on a
white background).

WINDOWS

You can subdivide the screen 1into rectangular areas, called windows. A
maximum of sixteen windows can be opened (the PCOS SBASIC command may be
used to preallocate memory for a specified number of windows). A window
is a portion of the screen that you can work on as if 1t were a screen 1n
its own right. The operations you perform within a window have no effect
on any other window you may have opened. The dimensions of the windows
you onzn are under your control by using the WINOOW statement, wnich is
explained later in this chapter. A window can be used to display text, or
graphics or both text and graphics. If you want to use graphics in a
window you can either select yourown set of co-ordinates or you can use
the default values supplied by the system(these options are described in
the section explaining the SCALE statement, later on in this chapter).

The default co-ordinate system is the hardware co-ordinate system (in
pixel) only if the video has not been split into windows and the 512 x
256 display mode has been used. In any other case the default co-ordinate
system is a user co-ordinate system, as the window is subdivided 1in 512
units along the x-axis and 256 units along the y-axis and the origin
(3,9) is placed at the lower left-hand corner of the window.

1f you want to use a window to display and operate on lines of text, the
origin 1is placed at the top left-hand corner of the window, at the
cosition (1,1) where you enter you first character. (The text co-ordin-
ates are always expressed in terms of column and row). The CURSOR state-
ment (described later in this chapter) allows you to move to any charac-
ter nosition within the window.

GRAPHICS

Remember that graphics co-ordinates and text co-ordinates are totally
independent. Every window has two cursors, one for graphics, another for
text. The graphic cursor does not move automatically when graphic
statements are executed. Both text and graphic cursors may be positioned
by using the CURSOR statement.

Lf an attempt is made to draw a figure (or a label string, see 'Profess-
tonal Computer Operating System (PCOS)- User Guice') which falls outside
the current window boundary (i.e. outside the window you are working on),
only the portion of the figure (or the label string) which falls inside
the window boundary is drawn, and the remainder is "clipped".

OPENING WINDOWS

When BASIC 1is initially entered, the default co-ordinate system exists,
and the entire screen is one single window, window number 7. You may
define a new window to be a rectangular portion of any existing window.
To do that, you must use the WINDOW statement.

WINDOW - TO OPEN A WINDOW (PROGRAM/IMMEDIATE)

Opens a new window by subdividing the current window (which is called the
"parent’ window). The current window is the one you are working within.

window
| number e WINDOW o | quadrant \—o®—¢. position
varnable

(\ J vertical | horizonta
spacing J spacing 1

Figure 14-2 WINDOW Statement - To open a window

Where

SYNTAX ELEMENT

window number variable

quadrant

position

MEANING

this 1s an integer variahle, to which the system
assigns an 1integer value which identifies the
window you are opening. This value will be 1in
the range 2 to 16. The system assigns values in
ascending numeric sequence. The first window 1is
known to the system as window number 1, the
second 2, etc. Thus, if you are working within
window 4 and decide %o open another window, the
system will assign number 5 to the new window,
unless any of the windows 2 or 3 have been
closed (see CLOSE WINDOW statement below). 1n
which case the new window will be assigned the
smallest available window number. Window 1 can
never be closed. The window being split (in this
example window 4) is called the parent window
because the new window 1s a subdivision of 1t.

Note: The complete screen is considered by the
system to be the first window and 1is therefore
assigned window number 1. 1f 1t 1s split to
generate other windows, it maintains the number
]

specifies in which part of the parent window a
new window will be opened.

There are four options:

top section of the parent window

1 bottom section

2 left-hand section

3 right-hand section

this parameter defines the position where the
parent window 1s to be split to open the new

window.

1f the value of ‘'quadrant' 1is @ or 1 then a
horizontal split will be made. The wvalue

GRAPHICS

vertical spacing

provided for 'position' 1s an integer number of
scanlines within the range 1 to 255.

Note: The splitting line (which is not drawn) is
always calculated from the top of the parent
window.

1f the value of 'quadrant' 1s 2 or 3 a vertical
split will be made. In this case the integer
provided for 'position' will be an integer
number of characters within the following range:

t
Y

lower limit

upper limit (width of the parent window) - 1

Note: 1f position = -1, then the parent window
will be split in half (vertically or horizontal-
ly depending on the value of the quadrant).

If the 'quadrant' value is 2 or 3, the split is
calculated from the left-hand side of the parent
window.

this 1s an optional parameter which sets the
number of scanlines for each line of text, for
the window being opened. The minimum value for
'vertical spacing' 1is 1§ scanlines; this pro-
vides 25 lines of text on the whole screen. The
maximum value is 16, providing 16 lines of text.
If both the 'vertical spacing' and the horizon-
tal spacing parameters are omitted, then the
vertical spacing of the parent window 1is
assumed. However 1f the vertical spacing Iis
omitted but the horizontal spacing is given and
1s different than that of the parent window,
then the resulting vertical spacing will be 16
if the horizontal spacing is 8, and 1¢ if the
horizontal spacing is 6

horizontal snacing this 1is an optional parameter which sets the
space hetween characters in a line of text, for
the window heing onened. The 'horizontal spac-
ing' parameter is expressed in terms of 'pixels’
and can have one of two values 6 or 8. The first
of these values gives 8@ characters per full
screen line and the sacond 64. 1f this parameter
is omitted, then the horizontal spacing of the
parent window is assumed

Note: When a new window 1s opened the orevious contents of that area on
the screen are cleared and the background and foreground colours of the
parent window are assumed.

We have already seen that it is possible to specify the vertical and
horizontal spacing of a window at the time it 1s opened.

1n some cases it may be necessary to vary these spacing values 1n a
window which has already been opened. You can do this using the WINDOW
statement with the parameters guadrant and position set to zero.

WINDOW - TO SET WINDOW SPACING (PROGRAM/IMMEDIATE)

This window statement is handled as a special case. A new window 1s not
opened. Instead the number of the current window 1s returned. This
statement can bhe used to vary character spacing and/or line spacing
values for an existing window.

window
e -G —O—O0—0—0C

variable

Jertical horizontat
| spacing spacing

Fiqure 14-3 WINDOW Statement - To Set Window Spacing

GRAPHICS

Where

SYNTAX ELEMENT

window number variable

vertical spacing

norizontal spacing

Remark

MEANING

the parameter 'window number variable' 1is an
Integer variable to which the system assigns the
number of the current window

value of the 'guadrant' parameter
value of the 'position' parameter

this 1is an optional parameter which sets *he
number of scanlines for each line of text, for
the existing window. The minimum value for
'vertical spacing' 1is 1¢ scanlines; this pro-
vides 25 lines of text on the whole screen. The
maximum value is 16, providing 16 lines of text.
If both the ‘'vertical spacing’ and the 'hori-
zontal spacing' parameters are omitted, then the
vertical spacing is not changed. However if the
vertical spacing is omitted, but the horizontal
spacing 1is given and is different than its
current value, then the resulting vertical
spacing will be 16 if the horizontal spacing is
8, and 1§ if the horizontal spacing is 6

this 1s an optional parameter which sets the
space between characters in a line of text, for
the existing window. The 'horizontal spacing'’
parameter 1is expressed in terms of 'pixels' and
can have one of two values 6 or 8. The first of
these values gives 8@ characters per full screen
line and the second 64. If this parameter 1is
omitted, then the horizontal spacing 1is not
changed

when you switch the system on there is only one window, window number 1,
consisting of the entire screen. The horizontal spacing value is 8, and
the vertical spacing is 16, giving a display mcde of 64 characters across
by 16 text lines down. You can change the display mode to 8§ by 25 by

using the WINDOW statement 1mmediately after entering BASIC, and
specifying the horizontal spacing as 6 pixels and the vertical spacing as

19 scanlines.
Examples

1F you enter..

A=WINDOW(@,109)

A=WINDOW(@,10d,14)

B=WINDOW(2,5@)

A=WINDOW(@, 199)
PRINT A

A=3:D=4¢:F=15:6=8 il
W=WINDOW(A,D,F,G)

W2=WINDOW(1,205,16)
W3=WINDOW(@,47,16) 4R
WAa=WINDOW(2,2@,16)
W5=WINDOW(3,4d,16)

THEN. ..

the screen 1s split horizontally, the new win-
dow 1s opened in the top part of the parent
window. The new window will have a height of a
hundred scanlines and line spacing 1is gilven
the value of the parent window

as above, except the vertical line spacing is
specified as 14 scanlines

the screen 1s split vertically, the new window
is opened in the left-hand part of the parent
window. The new window will be 5§ character
positions wide. Line-spacing has the value of
the parent window

it 1s always possible to find out what number
the operating system has assigned to an exist-
ing window

If the WINDOW statement opens a window which
1s identified by the variable A, the onerating
system assigns an integer value to this vari-
able.

This can be disnlayed by a PRINT A statement

the screen is split vertically, the new window
1s opened in the right-hand part of the parent
window, the vertical spacing 1s 15 scanlines
and each full text line may contain 64
characters

these WINDOW statements split the screen 1nto
five windows. The splitting sequence 1s shown
in the following figures

|

GRAPHICS

(T 1 ([

—

& =
=1\ [
= =

—

Figure 14-4 Sequence Opening Windows

USING THE WINDOWS

By wusing the windows, it 1is possihle to display a number »f texts or
diagrams, each with a different text spacing or with aifferent foraground
and background colours. You can clear whatever appears in a window ot 20y
time by using a CLS Statement.

It 1s also possible to define a user co-ordinate system for svary operad
window, using the SCALE statement (see later in this chapter).

The WINDOW statement below allows you to select a window.

3

I
i

Ne)

WINDOW - TO SELECT A WINDOW (PROGRAM/IMMEDIATE)

This statement selects a window. The window selected becomes the 'current

window'.

window
WINDOW @ number >

expression

Figure 14-5 WINDOW Statement - To select a window

Where

SYNTAX ELEMENT

window number
expression

Examples

IF you enter.

WINDOW %A

MEANING

this selects the window to become the current
window. 1t 1is a numeric expression whose value
1s rounded to the nearest integer to represent
the window number. 1t has a value between 1 and
16 and 1t must correspond to an existing window,
otherwise an error occurs

THEN. ..

the system starts to operate within the window
which was assigned the value of the variable A
when it was opened. 1f the value assigned to the
variable A is known, (e.g. 2) then this
statement could be entered as follows:

WINDOW %2

GRAPHICS

WINDOW %7 the system starts to operate within the window
to which the operating system assigned the value
7. As you know, this is the main window (i.e.
the whole screen or what is left of 1t),

Remarks

With the 4-colour version of the M20 you can work with 4 colours on the
whole screen. These colours are chosen from a set of 8 possible colours.

Obviously, this choice does not exist with the black and white version.

The COLOR - GLOBAL COLOUR SET SELECTION statement is used on the d4-colour
system to choose the set of colours to be used.

COLOR - GLOBAL COLOUR SET SELECTION (PROGRAM/IMMEDIATE)

Selects 4 of the 8 colours for use on a 4-colour displeay.

With a black and white or an 8-colour display 1t may be used, but 1t has
no effect.

colour colour | :] colour | | colour
@ e code | | code code code

Figure 14-6 COLOR - Global Colour Sct Selection Statement

Where
SYNTAX ELEMENT MEANING
colour code is a numeric expression having an integer value

in the range @ to 7. Each of these values
corresponds to a colour as in Table 14-1.

1f the numeric expression value 1s not integer,
it is rounded to the nearest integer.

14-11

Colour Codes

£

The following table specifies the numeric code for each colour. It 1s

valid for both 4-colour and 8-colour systems.

COLOUR CODE COLOUR

black
green
blue
cyan
red
yellow
magenta
white

~N O U AW N 2w

Table 14-1

Colour Numbers

in many graphics statements, an optional parameter 1s a ''colour number'.
In a 4-colour system the colour number 1s an integer from ¢ to 3
corresponding to the order position of the four colour codes given 1in the
COLOR-Global Colour Set Selection statement. This is not to be confused
with the colour code shown in the table above. In a 4-colour system, if
+this COLOR statement 1is not executed, the four default colours are:
black, green, blue and red. Note that this 1s as though the statement
COLQUR=@,1,2,4 has been executed.

The COLOR statement described above has no effect eilther when used on a
black and white system, because the colour numbers are defined as @ for
black and 1 for white, or when used on an 8-colour system, because there
1s no distinction between colour codes and colour numbers, and, there are
no default colours (as all the colours are present).

We have already seen that each window has a foreground colour and a
background colour. For both the black and white and the colour systems
the default value is colour number § for the background colour and colour
number 1 for the foreground colour. For a 4-colour system the colour of
the (text and graphic) cursor 1is either the last colour explicitly
declared by the COLOR statement or red if no COLOR statement 1s used. For
an 8-colour system the colour of the (text and graphic) cursor 1s always
white. It is possible to change these default foreground and backgrcund
colours by using a different form of the COLOR statement. This 1is
described below.

GRAPHICS

COLOR (PROGRAM/IMMEDIATE)

Sclects the background and foreground colours for a particular window.

wmdl;)\‘: foreground |backgroung| l
numoe colour colour
expression

Figure 14-7 COLOR Statement

Where
SYNTAX ELEMENT
window number

expression

foreground colour

background colour

Remarks

MEANING

specifies the window to Le operated on; it 1is
optional and, if omitted, tne statement operates
on the current window

specifies the foreground colour number of the
window. It may be a numeric expression whose
value 1s rounded to the nearest lnteger

this 1is optional and is used to specify the
background colour number. It may be a numeric
expression whose value 1s rounded to the nearest
integer. 1f omitted, the previously specified
background colour remains.

Once the COLOR Statement has been executed, the foreground and background
colours are changed accordingly. You may do one of the following to
realize the change of colour requested.

1. Execute the CLS statement (described later in this chapter), to supply
the window with a new background colour.

2. Execute the PRESET statement (described later in this chapter), to
colour parts of the window with a new background colour.

194 12

3. Display a text to change the foregrourd and/or background colour for
that part of the window where the new text appears.

Examples
IF you enter... THEN. ..
COLOR &,1 the current window will have a white background
and a black foreground
COLCR %A,9,1 as above, but the statement operates on the
window identified by the variable A
Remarks

1f the user enters COLOR #.1 instead of COLOR g,1, further character
input from keyboard will be invisible (as @.1 1is rounded to @). To
recover, enter CLEAR or the COLOR statement in the correct way.

CLS (PROGRAM/IMMEDIATE)

Clears the contents of either the current window or a specified window.
To clear a window means to fill it with its background colour.

window
E D 1

expression

Figure 14-8 (LS Statement

GRAPHICS

Where

SYNTAX ELEMENT MEANING
wlndow number this selects the window to be operated on. 1t is
expression a numeric 1nteger expression which represents 3

window number.
The use of this parameter is optional. [f it 1is

not specified, the operation is performed on the
current window

SCALE (PROGRAM/IMMEDIATE)

Allows you to change to any user co-ordinate systen, aefining a scale
between the default co-ordinates and the user co-ordinates.

window
——={ SCALE e number | xo —g‘ :>—. X1
expression

Lw~@—~v—~

Figure 14-9 SCALE Statement

Where

SYNTAX ELEMENT MEANING
window number a numeric integer expression selecting the
expression window. If omitted the —current wirdow is

selected

x@,x1,y@,y1

Remarks

window dimensions (user coordinates):

x@: left-hand side of the window (l.e. x
minimum)

x1: right-hand side of the window (i.e. x
maximum)

y@: bottom of the window (1.e.y minimum)
y1: top of the window (i.e. y maximum)

Note: x1 - x@, y1 - y@ can be either positive or
negative, but must never be equal to zero.

When a SCALE statement has been executed, you must express co-ordilnate

values that refer to the

user cc-ordinate system.

The co-ordinate system 1s the default one 1¥:

- no SCALE statement has

- the statement:

heen executed, or

SCALE @, 511, @, 255 has been executed

Examples (4-colour display)

1F you enter...

COLOR = 3,7,1,5 KGN
CLS
LINE(Z,8)-(511,255)

14-1A

THEN. ..

The LINE statement (described la-
ter) draws a black line on a cyan
background from a point specified
by co-ordinates (§,§) to (511,255).

BAS1C LANGUAGE - REFERENCE GULDE

~d

GRAPHICS

SCALE -109¢,1000,-1098,1009

LINE (@,0)-(511,255)

This line 1is shown in the figure
14-1¢.

If no SCALE statement has been
executed previously, the default
co-ordinate system is adopted.

a user co-ordinate system is adop-
ted using a SCALE statement. Thus
the same LINE statement as above
displays a different image. (Sce
the figure 14-11).

Figure 14-1¢

LINE Statement

Figure 14-117 SCALE and LINE Statements

Remarks

Having defined a new co-ordinate system, using the SCALE statement, it
remains in effect until a new SCALE statement is executed or you leave
the BASIC environment. To find the pixel co-ordinates of a point, you
must use SCALEX function and/or SCALEY function. For example the PCOS
command LABEL (callable from BASIC by a CALL or EXEC statement) requires
the expression of the x-pos, and y-pos parameters in the pixel
co-ordinate system. Thus you have to use SCALEX and SCALEY functions if
you are working with a user co-ordinate system.

SCALEX

Converts a user co-ordinate into the associated pixel co-ordinate on the
x-ax1ls of tne current window.

14-18 BASIC LANGUAGE - REFERENCE GUINF

GRAPHICS

P———

@—0 coordinate —o@—..
_‘

Figure 14-12 SCALEX Function

Where
SYNTAX ELEMENT MEANING
coordinate a user co-ordinate on the x-axis

SCALEY

Converts a user co-ordinate into the associated pixel co-ordinate on the
y-axls of the current window.

P E—

@——-’ coordinate _’Q—'
Figure 14-13 SCALEY Function
Where
SYNTAX ELEMENT MEANING

co-ordinate a user co-ordinate on the y-axis

I I o

CLOSING WINDOWS

Once the screen has been divided into windows, 1t 1s possible to close
any of the windows, thus enlarging the size of 1ts parent window. It 1s
also possible to return to the "initial system” state where there 1s only
one window. To do either of these, the CLOSE WINDOW statement 1s used.

CLOSE WINDOW (PROGRAM/IMMEDIATE)

Closes a selected window or all opened windows.

window
——'@LOSE WINDOW e j number
expression
Figure 14-14 CLGSE WINDOW Statement
Where
SYNTAX ELEMENT MEANING
~indow number this is a numeric integer expression represent-
expressionr ing a window number. 1t identifies the window %o

be closed. 1f omitted, all opened windows,
except the main window (1.e. the window number
1) are closed

The CLOSE WINDOW statement wlth the wlndow number expression parameter
closes the window identified by the parameter. The area of this window 1is
assigned to the rectangle which was originally split to open it. The area
of the window which has been closea is displayed with the backgrounrd
colour of the window to which the released space 1s assigned.

Note: The (LOSE WINDOW statement has no affect on the mair wi~dow. 7773
window can never be closed.

GRAPHICS

DISPLAYING CURSORS

Each window has two cursor positions: one for text and one for graphics.
The text cursor position indicates the position where the next alpha-
numeric character will be displayed. This position is expressed in terms
of the text row number and the text column number.

The POS function allows you to know the position of the text cursor in
the current window.

Another visible cursor may be associated with any position you desire.
This cursor 1s called the graphic cursor, although it need not be
assoclated with graphics, nor does it move automatically when graphic
statements are executed.

By using the CURSOR statement described below, you can specify whether

you want to display one of the cursors, whether to make it blink, and
whether to change 1ts shape from the default shape.

The default shape of the graphic cursor is a rectangle of 2 x 2 pixels,
The default shape of the text cursor is an underbar, ¥ you want to
display one of the cursors, you can only do this in the window where you
are operating; in fact as soon as you select another window, the cursor
1n the previous window disappears, but it is storsd and appears again
with the same characteristics whenever you return to that window. Bear in
mind that when the text cursor 1is turned on, the graphic cursor 1is
automatically disabled and viceversa; thus the two cursors canrot be
displayed at the same time.

CURSOR (PROGRAM/IMMEDIATE)

There are two basic formats for this statement: CURSOR and CURSOR POINT,
allowing the position and attributes of the text cursor and graphic
cursor, respectively, to be specified.

—@RSOFDAL(POWT)l£®_. x

Jon —off] | rate L@——Q shape |

Figure 14-15 CURSOR Statement

Where

SYNTAX ELEMENT

POINT

on-off

MEANING

this 1is an optional keyword. [t is used to
operate on the graphic cursor. If onitted,
operations are performed on the text cursor -

these specify where the cursor is to be nlaced.

If we are dealing with the text cursor, ¢nen x

and y represent the column and row of text res-
pectively. If we are dealing with the graphic

cursor, then x and y represent the co-ordinates

of the lower left hand corner of the cursor

bitmap.

specifies whether or not the cursor is to be
displayed:

LY
]

not displayed

—
t

displayed

GRAPHICS

rate

shape

Examples

1F you enter...

CURSQOR POINT(8@,3¢):

AS=INPUTS(1)

specifies whether or not the cursor is to blirk:
4 = no blinking
1-2¢ = number of blinks per second

this is an optional parameter. 1t alters tre
snape of the cursor. It 1s the first element of
a six element integer array. The array nust 2e
defined 9y the wuser; 1%ts componentis are “he
desired bSit-map of the cursor. Each 21t of <ae
cursor Sit-map represents a nixel.

The contents of the cursor bitmao get ¥ORed with
the contents of that part of the scrzen D1
representing the screen arca occupled oy =
cursor,

For both the text cursor and the graphic Zurss”
the bit-map is 8 pixels wide and 12 pixels nign

THEN. ..

the graphic cursor 1s positioned at
the point wlth co-ordinates
(8¢,30).

The statement AS=INPUTS{1) has been
entered to allow the cursor o
remain 1in the specified position
until vyou enter a character from
keyboard

CURSOR POTINT(53,50)1:
AS=INPUTS(1) KCH

CURSOR POINT(S@,5¢)1,1:
AS=INPUTS(1)

CURSOR (32,8)1:As=INPUTS(1) H

CURSOR (32,8)1,8,A%(1):
AS=INPUTS (1)

BIT MAP CLEMENT
o
DI
ms e
AR
mm e
e

Table 14-2 Cursor Bit Map

the graphic cursor is positioned at
the point with co-ordinates (59,5¢)
and 1is displayed

the graphic cursor 1s positioned at
the point with co-ordinates (5@,-
5¢), it 1is displayed and blinks at
a rate of 1 blink per second

the text cursor 1s positioned at
column 32 of row 8; 1t 1s displayed
and 1s not blinking.

as above but the cursor shape has
been defined by the user as an up
arrow (see table below)

DECIMAL HEXADECTMAL
4152 &H1738
31998 &H7CFE
14392 &H3838
14392 &H3838
14392 &H3838
14392 &H3838

Note: Remember that cach element of the integer array is a sixteen bit

representation.

POS (PROGRAM/IMMEDIATE)

Returns the position of the text cursor in the current window.

GRAPHICS

——pf variabie Jeme—p J coordinate
attribute

ees————

Figure 14-16 POS Statement

Where
SYNTAX ELEMENT MEANING

variable a numeric variable to which the system assigns
an 1nteger value. This represents elther the
row or column position of the text cursor
within the current window {see the co-ordi-ate
attribute below)

coordinate attribute specifies either the row or column position.It

is @ for a column pecsition or any non zero
value for the row position

DRAWING LINES, RECTANGLES, AND CIRCLES

The M20 BASIC graphics extensions include statements allowing you to
draw geometric figures.

LINE (PROGRAM/IMMEDIATE)

Oraws either a line or a rectangle, or a filled rectangle, in a specified
colour, with a specified diagonal.

14-25

wirdow
@D
2xpIession

Figure 14-17 LINE Statement

Where

SYNTAX ELEMEMT

window number
expression

Y
—
m
e

SRS

R

14-26

MEANTING

A numeric 1integer expression specifyling the
window on which the LINE statement 1is to work.
By default the LINE statement ope-ates on the
current window.

optional keyword. This ellows the use of rela-
tive co-ordinates. Relative starting co-ordi-
nates (x,,y.) are relative to the co-crdinates
of the last point drawn or (in the absence of
such a point) to the co-ordinates of the bottom
left-hand ccorner of the window. Relative ending
co-ordinates (x_,y.) are relative to the start
of the line (or rectangle).

These are the co-ordinates of the starting point
of the line. 1f omitted, the line specified by
the LINE statement starts from the 1ast point
drawri, or from the bottom left-hand corner of
the window, if no point has yet been drawn.

Trese are *=he co-ordinates of the end point of
the line.

RAQTI | ANCHIAGFE _ RFEFERFNCFE CLITHE

-4

GRAPHICS

colour

B (Box)

F (Filled)

action verb

A colour number specifying the colour with which
the line or rectangle will be drawn. The default
value 1s the foreground colour of *he current
window.

An optional parameter which allows you to trace
a rectangle with its sides parallel to the edges
of the window. Its diagonal is specified by the
co-ordinates (x) and (x).
11)/1 (2'y2

An optional parameter which can only be used if
5 1s also used. '3F' drauws a rectangle and
fills 1t 1n with the colour specified oy the
colour parameter or with the foreground colour
1f the colour parameter is not given,

This 1is an optional parameter which can assume
the following values: AND, XOR, CR, NOT, PSET,
PRESET.

The-verb PSET indicates that the line, rectangle
or filled rectangle is to be drawn in the speci-
fied colour. The verbs AND, OR, and XOR indicate
that the colour of the line, rectangle, or
filled roctangle is the result of a logical
operation between the specified colour and the
existing colour of each pixel on the screen
covered by the figure. The verb NOT indicates
that the colour of the line, rectangle, or
filled rectangle will be the complement of the
existing colour of each pixel covered by the
figure. The verb PRESET indicates that the line,
rectangle, or filled rectangle will be drawn in
the background colour.

The default action verb is PSET,

Example (4-colour display)

DISPLAY

19 COLOR = 4,2,4,5

2@ CLS

3¢ LINE (206,108)-(306,100)
49 LINE (256,200)

5@ LINE STEP (-5¢,-14¢)

6@ PAINT (256,150)

Figure 14-18 DOrawing a Triangle

Remark

COMMENTS

This orogram draws an 1isosceles
triangle and paints it blue (the
foreground colour).

The background colour 1is red (see
figure 14-18)

The PAINT statement 1s describhed
below.

1f the parameters specified for drawing a line or a box are such that 2
nortiocn of the line or the box falls outside the winaow houndary, the

line or nox will still be

boundary clipped.

with the portion outside the window

GRAPHICS

Draws a circle,

CIRCLE (PROGRAM/IMMEDIATE)

The centre of the circle is specified by the x,y co-ordinates: the radius
1s specified by the '"r' parameter.

CIRCLE Y

window
number | | X _.@_q ¥
expression

1
i
(W ‘
sDect cran
s | colour ’ | 30¢ y [i L

1T Q

Figure 14-19 CIRCLE Statement

Where

SYNTAX ELEMENT

window number
expression

X,y

colour

MEANING

A numeric integer expression which selects tn
window 1n which the CIRCLE statement is
operate. This 1is optional and, if omitted,
current window is selected.

N §
D

ct
3
@ O

The centre of the circle
The radius of the circle.

A colour number specifying the colour with which
the circumference will be drawn., Tre cefault is
the current foreground colour of the selec-2d
window.

aspect ratio

action verb

Example

12
29
33
a9
58
69

DISPLAY

COLOR = 2,4,5,¢8

CLS

CIRCLE (19¢,129),9¢
CIRCLE (15¢,13¢),12¢
CIRCLE (259,12¢),10¢
PAINT (180,124)

ODue to the non-uniform physical distribution of
the pixels on the screen, the user may specify a
value of the aspect ratio to draw a true circle
with different monitors,

The default value of aspect ratio (which must be
& positive real number) 1s @.8¢7. This value
produces a circle, with the M20 standard
monitor,

An optional parameter which may assume one of
the following values: AND, XOR, OR, NOT, PSET,
PRESET.

Each defines the operation which will be done
for every pixel along the curve.

The verb PSET indicates that the circle is to be
drawn in the specified colour. The verbs AND,
OR, and XOR 1indicate that the colour of the
circle 1is the result of a logical operation
between the specified colour and the existing
colour of each pixel covered by the curve. The
verb NOT 1indicates that the colour of the circle
will be the complement of the existing colour of
each pixel along that curve. The verb PRESET
indicates that the circle will be drawn in the
background colour. The default action verh is
PSET.

(4-colour display)

COMMENTS

The program draws three intersec-
ting circles.

The background colour is blue, the
circumferences are red (the fore-
ground colour) and the area of
lntersection is also red. See
figure 14-20.

The PAINT statement 1s described
below.

GRAPHICS

Figure 14-20 Intersecting Circles

Remarks

When a SCALE statement 1s wused, the aspect ratio parameter is not
affected by the scaling, and the radius of the circle is determired only
by the horizontal scaling of the window in which the circle 1is to be
darawn.

DISPLAYING POINTS AND PAINTING FIGURES

The most elementary graphic function is that of illuminating the position
of a single point 1n a specified colour. This can be done using the PSET
and PRESET statements.

The PAINT statement allows you to colour the area inside a cliosed figure.

The POINT function allows you to know the colour number of a soecified
pixel.

PSET (PROGRAM/IMMEDIATE)

Colours the pixel either at the specified (x,y) co-ordinates or, if the
window has been scaled, the pixel nearest the (x,y) co-ordinates. It
colours this pixel with either a specified or foreground colour.

window 1
@ e | number —o@—. x y p—()] colour -l.
expression

Figure 14-21 PSET Statement

Where
SYNTAX ELEMENT MEANING

window number a numeric integer expression, which represents

expression the window 1in which PSET is to work. It is
optional, the default is the current window

X,y the co-ordinates vused by PSET. 1f the X,y
co-ordinates specify a point outside the window,
the point will not be displayed because of the
"clipping'.

colour defines the colour number for the polnt dis-

played. This parameter is optional; by default
the foreground colour of the specified window is
used

PRESET (PROGRAM/IMMEDIATE)

Colours the pixel either at the (x,y) co-ordinates or, if the window has
been scaled, the pixel nearest the (x,y) co-ordinates. it colours this
pixel with the current background colour of either the current or
selected window.

14 29

GRAPHICS

window
PRESET o number x % \ —o@——o
expression

Figure 14-22 PRESET Statement

Where
SYNTAX ELEMENT MEANING
window number a numeric 1nteger expression representing the
expression window 1n which the PRESET statement 1is %o
operate. This 1s an optional parame*er; the
default 1s the current window
X,y co-ordinates on which PRESET works. 1f the x,y

specify a point outside the window, the point
will not be displayed because of the 'clipping"

PAINT (PROGRAM/IMMEDIATE)

Colours the area inside a closed figure, starting from tne pixel either
at the specified (x,y) co-ordinates or, 1if the window has been scaled,
the pixel nearest the (x,y) co-ordinates.

The area can be the whole or part of the specified window.

window
PAINT e number X -—o@—. ¥
expression
colour] l bcolour —IL

Figure 14-23 PAINT Statement

Where

SYNTAX ELEMENT

window number
expression

X,y

colour

bcolour

Note: To PAINT 1nside a
within the border of the
figure, only the portion
be coloured.

MEANING

numeric integer expression which represents the
window on which the PAINT statement is to work.
This 1s an optional parameter. By default the
current window is selected

co-ordinates of the pixel from which painting
begins

a colour number specifying the colour to be used
to paint the window or a closed figure within
it. Its default value is the current foreground
colour

a colour number specifying the colour of the
border of the closed figure to be PAINTed. By
default, the foreground colour of the specified
window 1s assumed

predefined closed figure, ensure that x,y fall
figure. 1f they fall outside the border of the
of the window which is outside the figure will

Example (4-colour display)

DISPLAY

18 COLOR = 2,5,4,0

2¢ CLS

3¢ CIRCLE (256,128),130,2
4¢ PAINT (256,128),1,2

5¢ LINE (251,123)-STEP (1

14-34

COMMENTS

statement 14 selects four among the
eight available colours. S5tatement
28 clears the screen with the
background colour (in this case

g,1¢),3,8F blue). Statement 3¢ draws a red
circumference with a radius of 13¢
whose centre 1is (256,128). State-
ment 4§ paints the circle yellow.
Statement 5@ draws a black filled
In box 1in the middle of the circle
(see figure 14-24)

MA~AT A L aim e m= e —

GRAPHICS

Figure 14-24 Drawing and Painting a Circle

Example (8-colour display)

DISPLAY

1¢ COLOR 5,2

2@ CLS

3¢ CIRCLE(256,128)1348,4

4P PAINT(256,128),5,4

53 LINE(251,123)-(1¢,19),8,8F

COMMENTS

Statement 1¢ specifies the fore-
ground colour (yellow) and the
background colour (blue).

Statement 2@ clears the screen wltn
the background colour (in this casg
blue).

Statement 3@ draws a red circum-
ference with a radius of 13@ whose
centre is (256,128).

Statement 4@ opaints the circle
yellow.

Statement 5@ draws a black filled

in box 1n the middle of the circle
(see figure 14-24).

1A 2R

POINT (PROGRAM/IMMEDIATE)

Returns the colour number of the pixel either at the specitied (x,y)
co-ordinates or, if the window has been scaled, the pixel nearest the
(x,y) co-ordinates within the current window.

cotour

— | O —ED)— 00— 0O—0O0—0O—0
variable

Figure 14-25 POINT Statement

Where

SYNTAX ELEMENT MEANING

colour number variable a variable to which the system assigns an
integer value: @ or 1 for a black and white
system; 1in the range (@-3) for a 4-colour
system; in the range (@-7) for an 8-colour
system. This wvariable specifies the colour
number of the pixel either at the ({x,y)
co-ordinates or, 1f the window has been scaled,
the pixel nearest the (x,y) co-ordinates

X,y the co-ordinates of the pixel in question
Examples

DISPLAY COMMENTS
1% CIRCLE(5@,58), 28 draws a circle on the screen with its centre at

5@,5¢ and radius of 24.
2@ PSET(5d,5d) 1lluminates the pixel eilther at (5¢,5@) wich the

foreground colour or, 1if the window has been
scaled, the pixel nearest (5¢,5%)

1A 2L |23, Wallh el PAMSTIIACTT [ateatad ¥ ol VWl o o N aVes

GRAPHICS

3¢ A%=POINT(5¢,58) assigns the colour number (of the pixel eithe-
at the (5@,5@) co-ordinates or, 1f the windcw
has been scaled, the pixel nearest “he [5@,5¢)
co-ordinates) to the A% variable

4@ PRINT A% displays the contents of A%

SPECIAL STATEMENTS

There are tnree special statements: GET, PUT ard DRAW.

GET and PUT

You can store the whole window or any rectangle within a sindow, 11 3
one-dimensional integer array using the GET statement, or conversely ., ou
can restore anywhere on the screen a rectangle taken from 3 onme-dimen-
sional integer array by a PUT statement.

DRAW

The screen may be thought of as a sheet of paper on which JOU Can araw
w1th a pen (known as the ''virtual pen'). You can move the pen to any

[

cosition of the screen, drawing (''pen down') or not (""en up''y.
‘oii cen move the virtual pen within a window and Zraw lines in a 1iven
~olour using a DRAW statement.

GET - Graphics (PROGRAM/IMMEDIATE)

Stores the whole or any rectangle within a window in a specifiea
one-dimensional integer array.

11 .27

window
Aumber —{ s (X, 2
2xDression

L artay
X2 "2 pleman FT®

~

Figure 14-26 GET - Graphics Statement

Where

SYNTAX ELEMENT

window number
expression

Y
217>

array element

MEANING

A numeric 1integer expression specifying the
window 1n which GET is to operate. The default
1s the current window.

Define the rectangle to be stored, the rectangle

whose diagonal 1s soecificd by the line (x1,y1)

to (x_,y_). '
272

The first clement of the one-dimensional array
which 1s to contain the information acquired by
the GET operation. The system will fill the
array as follows: the first three elements of
the array will contain the width of the
rectangle, the height of the rectangle, and the
colour/monochrome flag, respectively. The re-
mainder of the array will contain the sit image
of each scanline of the rectangle itself. Each
array element contains a string of 16 bits. This
one dimensional array must have been previously
dimensioned by a DIM statement. The following
formula shows how to calculate the number of
elements of tne array:

((width

e x height)x DT)+ 3

GRAPHICS

where:

0T=1
0T=2
0T=3

[} means take integer

Displays an
using a GET stetemant.

image previously stored

with a black and white display

with a 4-colour display

witn an 8-colour display

(always round up)

PUT - Graphics (PROGRAM/IMMEDIATE)

1n a one-dimensioral 1lnteger array

NINCOoW
umnper
2Xpressionr

Wotoup

———o@—o Yy

achan
vBrD

Figure 14-27 PUT - Graphics Statement

Where

SYNTAX ELEMENT

window number A
expression

numeric
window

MEANING

expression specifying the

The default

integer

in which PUT 1s to operate.

1s the current window.

XT'YW Lefine the nposition of the rectangle to oe
X51Y5 displayed, the rectangle whose diagoreal 5
defired by the line (x],yw) to (xz,y7).

array element

action verb

Example (4-colour

7 COLOR = 2,4,5,¢
5 DIM B%(20@¢)

1f this rectangle is a different size from the
one in the stored array, the swaller of the two
is used. 1f x. and y_ are omitted the stored
rectangle will be displayed starting from the
top left-hand corner Xy Yy

The first element of the one-dimensional array
which contains the information stored by a GET
operation.

An optional parameter which may assume one of
the following values: AND, XOR, OR, NOT, PSET,
or PRESET. Each defines the operation which will
be done for every pixel within the rectangle.

The verb PSET indicates that the rectangle is to
be restored directly from the stored array. The
verbs AND, OR, and XOR 1indicate that the
rectangle displayed is the result of a logical
operation between the colour number of each
pixel 1in the stored array and the existing
colour number of each pixel con the screen within
that rectangle. The verb NOT 1ndicates that the
existing colour number of each pixel on the
screen will be complemented within that rectan-
gle, without regard to the stored array. The
verb PRESET indicates that the complement of the
stored array will be displayed on the screen.

The default action verb 1s PSET.

isplay)

COMMENTS

Statement S defines the array to
hold the bit image.

19 CLS:CIRCLE (256,128),84,3

20 LINE (19¢,6@)-(358,195),,8F,X0R Line 1§ clears the screen, (back-
3¢ GET (199,68)-(35@,128),8%(@) ground 1s blue) and draws a black
5¢ CLS:PUT (25¢,22@),8%(¢@) circumference.

......... Arare AF=COCACAC CHITNE

GRAPHICS

Statement 2§ draws a rectangle
superimposed on the circle end 1t
is filled-in 1in red. The XCR
operation between @ (blue), tre
background colour number, and 1
(red), the foreground colour num-
ber, is 1 (red). The portion of the
circumference within the rectangie
is coloured vyellow, as the XOR
operation between 3 and 1 1s 2.
(See figure 14-28.)

Statement 3@ saves a section of :he
screen in the array B%.

Line 5@ clears the screen and
restores the saved sectiorn of <the
screen (see figure 14-29).

Figure 14-28 1mage on tne Screen Resulting from Statements ¢ ara 29

Figure 14-29 1Image on the Screen Resulting from Statement 50

DRAW (PROGRAM/IMMEDIATE)

Moves the virtual pen within a window and cdraws lines in a given colour.

window 1
DRAW - number sgl}?’r;and L,

expression
Figure 14-30 DRAW Statement
Where
SYNTAX ELEMENT MEANING
window number A numeric integer expression specifying the
expression window in which DRAW 1s to operate. The default

1s the current window.

GRAPHICS

comrand string

‘ote: Command

oparameters (dx,dy,x,y and colour) can e ex
varianles. In this case the varilable names must be written betuween ecua.s

This can be either a string constart or a siri~j
variable. The string, in beoth cases, consists 3°
one or more commands shown 1n the cable helow
(see Commands), which cortrol the movemernt o<
the virtual pen.

With the exception of the C command, 211 com-
mands may be prefixed with the B option, which
Inhibits drawing, and followed by one of th
following action verbs: AND, XOR, OR, NOT, PSET,
PRESET, which define an operation on any poi-=
of the line. The action verbs are specifieq Dy
their first letter, except PRESST whizn is
specified by R.

The verb P (i.e. PSET) indicates that the “igurs
1s o be drawn in the specified =zolour.
verbs A (1.e. AND), O (i.e. ORj, and X (1.2,
XOR) 1ndicate that the colour of =-e ’
the result of a logical operation ne:.ezan -ne

D
“h
b

specified colour and the existing screesn 2o
tents along that figure. The verb N ‘1i.e. *N§
indicates that the colour of the figure will Se
the complement of the screen con:erts along tha*
figure. The verb R (i.e. PRESET) incicates that
the figure will be drawn in the backgroura
colour.,

The default action verb is P.

signs. See the examples below.

Commands

COMMAND

M dx,dy

J %,y

MEANING

Moves the pen from 1ts present position 3,n
say) to the position indicated by {a+ux,b+dy).

Moves the pen to the position indicatea oy
(x,y).

L dx
R dx

C colour

Examples

DISPLAY

99 PSET(1d,29)
100 Xx=23

13¢ DRAW '"'M=X=,25"

25¢ AS="8M 18,2
D28 MR 15,-3"

14 A4

Moves the pen up by dy positions.

Moves the pen down by dy positions.
Moves the pen left by dx positions.
Moves the pen right by dx positions.

Sets the colour to be used to draw. A colour
number must be soecified after C.

If no C is specified the last colour used by a
preceding DRAW or the foreground colour of the
current window 1s assumed.

COMMENTS

Statement 9@ colours the point (1¢,20) with *he
current foreground colour.

Statement 1¢@ sets X=23

Statement 13@ draws a line from the current pen
position (1¢,2¢) to the position (33,45), that
s (1¢+23,20+25)

Statement 25@ sets AS to the following command
string:

- the M command with the B option to move the
pen, without drawing from its current position
(a,b say) to the position (a+1¢,b+2)

- the D command to nmove the pen down 2§
positions, 1.e. to the point (a+1@,b-18)

- the M command to move the pen from 1ts current
position (a+1@,5-18) to the point (a+25,b-21).
The R option (PRESET) indicates that the line
must be drawn 1n the current background
colour,

GRAPHICS

269 DRAW AS Statement 260 executes tihe seguence of commanrds
specified by the AS variable.

Remarks

The sequence of commands 1n a DORAW statement may be entered either 1n
lower case or 1n unper case letters. They may be czeparated by blanks ur
they may be written contiguously.

GRAPHICS FACILITIES PROVIDED BY PCOS

The three RPC0S commands LABEL, SPRINT and LSCREZN can be ca..ed [n BASLC
by the CALL or EXEC statements,

Using the LABEL command you can displcy character strings o7 variap.2
sizes and orientation.

Using the SPRINT commana you can print Ine image of elther che scraen or
a snecified window.

Using the LSCREEN command you can get a hard copy of the text contents of
a specified window.
For detalled descriptions see the '“roiessional Computer Operating Systen
{PCOS) User Guide'.

g
3

A. ASCIl CODES

This table shows
ASCI1 code.

€
iF

Boxed characters

4

2000 0000
X000 2001
W0 N0 L0
WO MY
OO0 13100
VNI
KOO D10
NN 211
OO0 1000
KK} 100
WGO {01Y
0000 1011
NOGQ 1100
D000 HioL
p LV RERD)
BOLONERN]

01 2000
W00
WL 10
01T
WL TR
MO YL
LEVAR O]
WHM DT

INHERNG]

JORE
Y
Wi |
a0
i
G
WL O

W |
RET
WYL

WL AT

NUL
SOH
STX
ETX
EQT
ENQ
ACK
BEL
85
HT

gix 8).

decimal,
a b c
ad 40 D100 0000
6% 41 71000001
Kt 42 DI000010
5T 41 3100 N01L
Y] 44 TN
% 43 LRI DS
Noas 10
T4t 0001
"2 44 D100 1000
Y49 X ool
T4 dA 0 3IND 000
TS 4B JI00 G
e 4C NN
TT 4D 200t
*& 4E 0i001itt0
‘9 4F MDY
ED) SO 101000
L AR 2101 9001
842 52 nwiagte
L3} AR RDIDANN
LY PR TO IS n)
AT b DA IS
46 S Mgy
T8
LLIRES
< <3 oo
ISR 3 o
v R
20N B
a8
4 SE 1
3% SF [RERE
i e Pl o
. N RINURGNH
Woal Sraati
meoas et
W md VD
[T i
MRS TR D
il
PR R
B B
\ o
Y
e
TN Vi
i F '
F '
N Loy
5 o0t
R FRTE]
Jow
% i ol
R (]
. [|
m T4 U
B nL
AR [N
N il
N SRR
LA O AR S)|
N i
A °F RN

DEL

Ao

an
a9
AA
Al
A
AD
\E
AF

hexadecimal,

4

.00 0000
1900 000 |
19040 2010
D00 001§
RISV 1)
EDORIARAN
0D
X0
RO 1000
1000 1001
1000 1210
1300 1011
CH0 1100
001101
ROLLERRIY
HL L TR

01000
L0001
HEAID)
N QAT
ORIV
AR
ISIDI)
O

DO e

Wit g
M e
AN
W0
NADI

Wiy
[RANNEE

BIonI0g
L1 o0l
HGRILVEY
AR

A

Vel gl
[ARYEERERIY)
MR R
L I00

nh
BNV
P
ety
[
i i
HuR
P onan
LERERIEH
oy
LARIES W
.
v |

WL
REREEN!

U

are diffzarent

and binary representation of the

192
193
194
193
194

an

b [+

<0 100 2000
Cl 1100 0001
w2 11000010
[SR} P00 D01
4 LI 2100
CS 0010l
) IR IRVERTY
[001N
3 11001000
179 000t
AT
B0
CCOni o
CD 0t
CE 1in0io
C T R R

DO Ui 000
DI {101 D001
D2 I
DY 11 ol

)00
oS 1t ot
Do ii0tunio
DT wabanl

0B ! Jil
oC O
DD 1101
DE ot i
OF oL

B0 ool

E1 irimnonl
E2 oty
[Lt
E4 [RENIAEA

ES Lot
E6 IO
[HAREES
B4 Ui ione

£ RS
A

a1
ki il

ED !

EE ; '
(SRS
[[
Fi Lo
L it
\ ol
I

Decimai
Hexadec:mal

8 bit Binary
Reprasentaton

ASCIl Code

B. ASCIl CHARACTER EQUIVALENCES

This table shows the natlional equivalences for those ASCII characters
which appear on the video screen or printer 1n wvarious national guises,

ASCLL VALUE NATTONAL EQUIVALENT
= > > prd x - -
2 X $ 2 fF zz 3 i £ 3 % gz 3 3% 3% % 3
T ol - < Ja 2 D 7 X a N z Na hs 2 >
1523 O I T ¢ -
% 2 Gy soo0s s s s s s s s s s s oo
54 49 1 T T T B S : § 5 a4
91 58 (s s {)) i A £ A £ 3 3 [3
92 sC N s G IO o Y B ; o O o 5 : \ :
93 50] é §] U U < o) A A é e] b
96 60 : 3 ‘ . : . : . : : : . . . g
123 78 ! 3 8 { a a ? E] F a 2 a a { s
124 T ! bl J o) A G 8 b P o) a 2
28 70 X 5 2 ! u d g 3 a a a u J z
12678 - - i 1 - 2 - é é :

* Encircled characters are used for functions 1n BASIC.

C. ERROR CODES AND THEIR MEANING

ABOUT THIS APPENDIX

This Appendix lists all the errors returned from the BASIC Internreter,

They are not ailsplayed with their error number:

only the aescription
1s displayed.

CONTENTS

ERROR CODES AND C-1
THEIR MEANING

ERROR CODES AND THEIR MEANING

ERROR MESSAGE

cobe

1 NEXT without FOR

2 Syntax error

3 RETURN without GOSUB
4 Out of DATA

5 I1legal function call

COMMENT

A NEXT statement has been encoun-
tered without a matching FOR

A line has been encountered which
Includes an incorrect sequence of
characters {nisspelled keyword,
Incorroct punctuation etc.)

A RETURN has been encountersd for
which there 1is no previous un-
matched GOSUB statement

A REZAD statement has been executed
when there are no NATA statements

with unread data remaining 1in the
program

A parameter that is out of range
has been passed to a numeric or a
string function.

Such an error may occur when:

a. An array subscript 1is either
negative or too big.

b. A log function is assigned a
negative or a null argument.

c. The SQR functior 1is assigned a
negative value.

d. A negative number has an expo-
nent which is not an integer.

e. A USR function has been called
without having established che
ini1tial address.

f. An Incorrect argument nas been
made 1in one of the following
functions: MIDS, LEFTS, RIGHTS,
TAB, SPC, STRINGS, SPACESS,
INSTR. or ON...GOTO.

ERROR

MESSAGE
CODE |
6 Overflow
7 Qut of memory
(also used in PCOS)
8 Undefined line number
9 Subscript out cf range
19 Duplicate Definition
1M Division by zero

COMMENT

The result of a calculation 1s too
large to be represented 1n BASIC's
number format.

N.B. With underflow, the result 1is
taken as zero, and executlon con-
tinues without 1indication of an
error,

A program 1s too big; or has *%too
many loops, GOSUBS, variables: or
has expressions too complicated to
evaluate

A line reference 1s to a non-exis-
tent line from a GOTO, GOSUB,
IF..THEN..ELSE or DELETE

An array element has heen referred
to elther with a subscript that 1is
outside the dimensions of the array
or with the wrong number of sub-
scripts

Two DIM statements have been given
for the same array, or a3 M
statement has also been applied <o
an array after the default dimen-
sion of 10 was previously estab-
lished for that array

A division by zero has been encoun-
tered or the value zero has been
raised to a negative power. ln the
former case the result 1is machine
infinity (with the appropriate
sign) 2and 1n the latter case the
result 1s positive machine infinity

D

ERROR CODES AND THEIR MEANING

ERROR -
MESSAGE
coog ‘
12 Illegal direct
13 Type mismatch
(also used in PCOS)
14 Out of string space
15 String too long
16 String formula too
complex
17 Can't continue
18 Undefined user
function
19 No RESUME
29 RESUME without error

COMMENT

A statement which is invalid in
immediate (direct) mode has been
entered as an immediate command.

A string variable name has been
assigned a numeric value or vice
versa; a function that expects a
numeric argument has been given a3
string argument or vice versa

String variables have caused BASIC
to exceed the amount of free user
(BASIC will al-
locate space dynamically until it
runs out of nmemory)

memory remaining,

An attempt has been made to create
3 string more than 255 characrters
long

A string expression is too long or
too complex to be processed. It
should be broken intg smaller
expressions

An attempt has been made to con-
tinue a program that is non-
continuable; as it is halted due to
an error, was modified during a
break 1in execution, or does not
exist in user memory

A function, that has not been
previously defined, has been called

AN error-trapping routine has been
entered that contains no Rz SUME
statement

A RESUME statement has been ercoun-
tered before an
routine is entered

error-trapping

ERROR

CODE

22

23

25

29

30

31

32

34

35

36

37

38

MESSAGE
Missing operand
Line buffer overflow
FOR without NZXT
WHILE without WEND
WEND without WHILE
I[ZEE: Invalid talker/
list

ener address

IEEE: talker = listener
address

lEEE: Urprintable error
lIEEE: Board ot present

Window not open

Urable to create window

Invalid action verb

Parameter out of range

COMMENT

Arn expression contains an operator
but no following operand

An attempt has been made to enter 3
line with more than 255 characters

A FOR has been encountered without
a matching NEXT

A WHILE has been ericountered withn-
out a matching WEND

A WEND has been encountered wi-rosu*
a matching WHILE
talker listener

Use of 1llegal

address

An attempt has been made *c talk :o
a talker, or listen to a listerer

An error message 1s not orintable
l.2. corresponds to an error with

+an undefirned error code

An attempt has been made to vuse
iEEE on a machine which doces not
have the optional 1E£EE inverface

An attempt has been made to use a
window which 1s not at present open

The window to be created is too big
or too small for 1ts mode (graphics
or text)

An action verb has been incorrectly
spelt or used

One or more parameters have eax-
ceeded the limits set for their
range

ERROR CODES AND THEIR MEANING

ZRROR

MESSAGE
CUDE |
39 Too many dimensions
49 PCOS error
5¢ FIELD overflow
51 Internal error
(also used in PCOS)
52 Bad file number
53 File not found
(also used in PCOS)
54 Bad file mode
(also used in PCOS)
55 File already open

(also used in PCOS)

COMMENT

An attempt has been made to use an
array of more than orne dimension,
1n graphics mode

A PCOS error has been detected when
a PCOS command is being called from
BASIC

A FLELD statement has attempted to
allocate more bytes than were
specified for the record length of
a random file

An internal malfunction has oc-
cured. Report the conditions under
which the error occurred to your
Support Organisation

A statement or command refers to 3
file (having a file number not
within the range specified at
lnitialization) or the correaspon-
ding file is not open

A LOAD, KILL or OQPEN statement
refers to a file that does not
exist on the current disk

An attempt has been made to use
random file operations (GET# or
PUT#) with a sequential tile; or to
use the sequential operation LOAD
with a random file; or to use an
1llegal file mode with OPEN, 1.e.
not A,1,0, or R

A sequential OPEN, 0 has been
lssued for a file that is alreaay
open, or a KILL has been appliad to
a file that is open

ZRROR
Cooe

57

67

62

63

64

66

67

MESSAGE

Disk 1/0 error

(also used in PCOS)
File already exists
(also used 1n PCOS)

Disk full
(aiso used in PCOS)

Input past end

Bad record number

Bad file name

{also used in PCOS)

Direct statement in file

Too many files

(also used in PCOS)

COMMENT

An input/output errcr has occurred
during a disk 1/0 operation. lt is
a termirnation error, 1.e. PC0S/-
BASIC cannot recover - apoly a
RESET

The filename specified in a NAME
statement is identical %o a file-
name already 1in use on the disk

All disk storage space available 1is
1n use

An INPUT statement has bheen exa-
cuted: after all the data has beszn
assigned, or for an empty (null)
file.

Hint: wuse EOF function to detecrt
end of file

The record number used with a GET
or PUT statement exceeds range,
i.e. 1s § or greater thanm 32767

An invalid form of filename has
been used with KILL, LOAD, QPEN or
SAVe e.qg.:

- too long

- includes 1illegal characters s ich
as space or nyphen

A direct (immediate) stacement has
been enccuntered when loading an
ASCI1 format file.

The LOAD operation 1s terninated

An attempt has been nade tc create
a new file (using SAVE or OPEN)
when the present directory 1is
already full

ERROR CODES AND THEIR MEANING

ERROR

CODE MESSAGE

69 Volume name not found
7¢ Rename error

71 Volume number error
72 Volume not enabled
73 Invalid password

74 [llegal disk change
75 Write Protected

76 Error in Parameter
77 Too many parameters
78 File not OPEN

COMMENT

The volume name referred to does
ncet match (either of) the disk(s)
currently inserted

An attempt has been made to rename
a volume with an illegal name
number 1s

The specified volume

1llegal

The volume 1identifier includes a
password which must be quoted

The password entered 1s illegal

The disk has been changea since
last using the file

An attempt has been made to write
to a write protected disk

A parameter contains an illegal
character

More than the required number of
parameters have been specified

An attempt has been made to access
a file that is not open

D. DIFFERENCES BETWEEN PCOS RELEASES
AFFECTING BASIC

ABOUT THIS APPENDIX

This Appendix shows the differences between 1.3 and 2.8 PCOS releases
affecting BASIC.

CONTENTS

(FFERENCES BETWZzEN PCOS 9-1
EASES AFFECTING BASIC

DIFFERENCES BETWEEN PCOS RELEASES AFFECTING BASIC

PCOS RELEASE 1.3

Hard Disk is not supported

The 160K byte diskettes are not
supported

8-colour video 1s not supported

The Assembly language 1s not
supported

The following PCOS commands are not
supported:

ASM, 3VOLUMZ, CKEY, DCONFIG, LSCREEN,

PDEBUG, PUNLOAD, RFONT, SLANG, TLOC,
VVERIFY, WFONT

Greece and Yugoslavia keyboards
are not supported

BASLC command is resicent

PCOS5 and BASLIC are bocied at
initialization

PCOS RzLEASE 2.9
Hard Jisk 1s supported.

With a hard disk system driva
numbers are:

@ (on the laft, to inmsers disket-
)

19 (on the right, where the hard

disk 1s mounted)

The 160K byte diskettes are
ported

sup-

8-colour video is sunported.

With an
colour numbers £
colour codes ana the COLOR {glopal
colour set

8~colour display :zhe

coincide with one
selectlion) scacement

1f uced, does nct oroduce any

effect

The Assembly language 1s supportec

The followlng PCOS commards are
sunporied:

ASH, BVOLUME, CKEY, DCONFIG,
LSCREEN, PDZBUG, PUNLOAD, RFONT,

SLANG, TLOC, VVERIFY, WFONT

Greece and
are supnorted

Yugoslavia keyboards

BASIC command !s transient

Triviai-

Only PCCS 1s
1zaticen

oocteu ax

PCOS RELZASE 1.3

At 1nitialization the last selectad
drive is drive ¢

The PCOS prompt 1is

>
The default value of the memory
parameter in the CLEAR statement®
is 38¢¢g

The LABZL PCOS command does not
permit a colour narameter, thus
label strings may only be drawn
with the foreground colour

The range of values of the ''mosition
g p

narameter 1n the WINDOW (To open a
Wwindow) statement, if a horizontal
split is o pe made, is:

mic = vertical spacing valuy
arent window + |

upper limit = height of the narent
iindow - (lower limit + 1)

PCOS RELZASE 2.4

At initialization the last salect-
ed drive 1s the one that PCOS is
booted from

The PCOS prompt 1is
n>

where n specifies the last select-
ed drive, and may be:

g . .
1 }(w1th 2-diskette systems)

? : .

19 }(w1th hard-disk systems)

The default value of the memory
parameter 1n the CLEAR statcment

1s 3700¢

The LABEL PCOS command mdy specify
a colour parameter, *hus lahel
string may be drawn ir a specified
colour

The range of values of +he "Dos i~
cion'' parameter in the WINDOW (To
open a window) statement, 1if a
norizontal split is to bhe made,
is:

lower limitv = 1

E. BASIC STATEMENTS, COMMANDS AND
FUNCTIONS

AB0UT THIS APPENDIX

This Appendix lists all BASIC statements, commands and functions
1n alpnabetical order and provides a reference to tne corresponding
rage.

f a statement or a command may be used both in a program and an
immediate line, PROGRAM/IMMEDIATE is specified. 1f a command may
orly be used 1n an immediate line, IMMEDIATE is specified. If a state-
ment may only te used 1n a3 program line, PROGRAM is specified.

Instead for a function nothing is mentioned, as functions may always
be written both in a program and an immediate line.

CONTENTS

BASIC STATEMENTS, COMMANDS E-1
AND FUNCTIONS

BASIC STATEMENTS. COMMANDS AND FUNCTIONS

ABS

ASC

ATN

AUTO

CALL

COBL

CHAIN

CHRS

CINT

CIRCLE

CLEAR

CLOSE

CLOSE WINDOW

CLS

COLOR

COLOR - Global Colour

Set Selection

COMMON

CONT

€os

CSNG

CURSOR

(IMMEDLATE)

(PROGRAM/IMMEDIATE)

(PROGRAM)

(PROGRAM/IMMEDLATE)

(PROGRAM/IMMEDTATE)

(PROGRAM/IMMEDTATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/TMMEDIATE)

(PROGRAM/TMMEDIATE)

(PROGRAM)

(IMMEDIATE)

(PROGRAM/IMMEDIATE)

Page

9-6
9-19

9-6

10-9

9-20
9-3
14-29

5-1

14-20
14-14
14-13

14-11

11-6
13-5

9-3

14-21

Page

9-38;
cvo 12-41
9-38;
Cvl 12—41'
9-38-
DATA (PROGRAM) 5-5
DATES 9-37
JEFCBL (PROCRAM/IMMEDLATE) 4-10
oor FN (PROGRAM) 9-3
DeF inT {PROGRAM/TIMMEDTATZ) 4-190
SEFSHG (BROGRAM/TMMZDTATE) 4-10
USFSTR (PROGRAM/TMMZSIATE) 4-10
DeleTE (1MMEDLIATE) 3-2
i {PRUGRAM/ LriME U T AT 419
JRAW (PROGRAM/ITMMZIDTATZ) 1442
“OAT (1MMEDTATE) 3-7
=nND (PROGRAM) 13-4
o8 9-38;
12-28
ZRaSE (PROGRAM/THIMEDLATE) 4-22
" 9-18;
T HEER
RRR! 9-28;
13-17

ZRROR (PROGRAM/LMMZDLATE) 13-4

BASIC STATEMENTS, COMMANDS AND FUNCTIONS

ZXEC

EXP

F1ELD

FILES

FLX

FOR

FRE

GET - File

GzT - Graphics
GOsSuB

GOTO

HEXS
IF...GOTO.. . .ELSE
IF.. . THEN...ELSE
INKEYS

INPUT

INPUT#

INPUTS

INSTR

INT

(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

{(PROGRAM/IMMEDIATE)

(PROGRAM/TMMEDTATE)

(PROGRAM/IMMEDIATE)

(PROGRAM)

(PROGRAM/TMMEDIATE)

(PROGRAM/TMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM)

(PROGRAM/TMMEDIATE)

(PROGRAM/IMMEDIATE)

12-39

LET

LIST

L INE

LINE INPUT

LINE INPUT#

LLIST

LOAD

LoC

L0OG

LPOS

LPRINT
LPRINT USING
LSET

MERGE

M1D5

MLo3

MKDS

MKLS

MKSS

NAME

(PROGRAM/IMMEDTATE)
(IMMEDTATE)
(PROGRAM/TMMEDLATE)
(PROGRAM)
(PROGRAM/IMMEDTATE)
(IMMEDIATE)

(PROGRAM/TMMEDIATE)

(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDIATE)

{PROGRAM/TMMEDIATE)

(PROGRAM/IMMEDTATE)

(PROGRAM/1MMEDIATE)

Page
5-3
2-9

14-25

2-24
9-39;

12-18;
12-37

9-28

9-39;
12-33

9-40;
12-33

9-40;
12-33

3-13

BASIC STATEMENTS. COMMANDS AND FUNCTIONS

NULL

0CTS

ON ERROR 7%JTO

ON...GOSUB
ON...GOTO
OPEN

OPTION BASE
PAINT

POINT

PRINT #

PRINT USING
PRINT # USING
PSET

PUT - File

PUT - Graphics
RANDOMI ZE

READ

RENUM

(PROGRAM/IMMEDIATE)
(PROGRAM/IMMEDTATE)

(PROGRAM/IMMEDIATE)

(PROGRAM)

(PROGRAM)

(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/IMMEDIATE)

(PROGRAM/ IMMEDIATE)

(PROGRAM/IMMEDTATE)

(PROGRAM/TMMEDTATE)

(PROGRAM)

(IMMEDIATE)

12-14%

14-32

12-35

Page

RESTORE (PROGRAM) 5-5
RESUME (PROGRAM) 13-13
RETURN (PROGRAM) 18:3;
RIGHTS 9-31
RND 9-14
RSET (PROGRAM/TMMEDIATE) 12-31
RUN (PROGRAM/IMMEDIATE) 2-26
SAVE (PROGRAM/IMMEDLATE) 2-20
SCALE (PROGRAM/TMMEDIATE) 14-15
SCALEX 14-18
SCALEY 14-19
SGN 9-16
SIN 9.17
SPACES 9-32
$9C 9-40
SQR 9-17
STOP (PROGRAM) 13-4

STRS 9-33
STRINGS 9-34
SWAP (PROGRAM/IMMEDTATE) 5-4d

SYSTEM (PROGRAM/ IMMEDTATE) 10-12

TAB 9-41

BASIC STATEMENTS. COMMANDS AND FUNCTIONS

Page
TAN 9-18
TIMES 9-37
TROFF (PROGRAM/IMMEDIATE) 13-2
TRON (PROGRAM/IMMEDTATE) 13-2
VAL 9-35
VARPTR 9-47
WEND (PROGRAM/IMMEDTATE) 8-20
WHILE (PROGRAM/IMMEDIATE) 3-20
WIDTH (PROGRAM/IMMEDIATE) 7-2
WINDOW-To open (PROGRAM/IMMEDIATE) 14-3
a window
WINDOW-To select (PROGRAM/IMMEDIATE) 14-10
a window
WINDOW-To set window (PROGRAM/IMMEDIATE) 14-4
spacing
WRITE (PROGRAM/IMMEDIATE) 7-10
WRITE # (PROGRAM/TMMEDIATE) 12-17

m
1
~

NOTICE

ing. C. Olivetti & C. S.p.A. reserves the right to make improvements in
the product described in this manual at any time and without notice.

This material was prepared for the benefit of Olivetti customers. It 1s
recommended that the package be test run before actual use.

Anything 1in the standard form of the Olivetti Sales Contract to the
contrary not withstanding, all software being licensed to Customer is
licensed 'as 1is'. THERE ARE NO WARRANTIES EXPRESS OR IMPLIZD INCLUDING
WITHOUT LIMITATION THE TMPLIED WARRANTY OF FITNESS FOQR PURPOSE AND
OLIVETTI SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTTIAL OR
INCIDENTAL CAMAGES IN CONNECTION WITH SUCH SOFTWARE.

The enclosed programs are protected by Copyright and may be used only by
the Customer, Copying for wuse by third parties without the express
Written consent of Qlivetti ig prohibited.

GR Code 3982430 P (2)
Printed in Italy

	m20basic_001.tiff
	m20basic_002.tiff
	m20basic_003.tiff
	m20basic_004.tiff
	m20basic_005.tiff
	m20basic_006.tiff
	m20basic_007.tiff
	m20basic_008.tiff
	m20basic_009.tiff
	m20basic_010.tiff
	m20basic_011.tiff
	m20basic_012.tiff
	m20basic_013.tiff
	m20basic_014.tiff
	m20basic_015.tiff
	m20basic_016.tiff
	m20basic_017.tiff
	m20basic_018.tiff
	m20basic_019.tiff
	m20basic_020.tiff
	m20basic_021.tiff
	m20basic_022.tiff
	m20basic_023.tiff
	m20basic_024.tiff
	m20basic_025.tiff
	m20basic_026.tiff
	m20basic_027.tiff
	m20basic_028.tiff
	m20basic_029.tiff
	m20basic_030.tiff
	m20basic_031.tiff
	m20basic_032.tiff
	m20basic_033.tiff
	m20basic_034.tiff
	m20basic_035.tiff
	m20basic_036.tiff
	m20basic_037.tiff
	m20basic_038.tiff
	m20basic_039.tiff
	m20basic_040.tiff
	m20basic_041.tiff
	m20basic_042.tiff
	m20basic_043.tiff
	m20basic_044.tiff
	m20basic_045.tiff
	m20basic_046.tiff
	m20basic_047.tiff
	m20basic_048.tiff
	m20basic_049.tiff
	m20basic_050.tiff
	m20basic_051.tiff
	m20basic_052.tiff
	m20basic_053.tiff
	m20basic_054.tiff
	m20basic_055.tiff
	m20basic_056.tiff
	m20basic_057.tiff
	m20basic_058.tiff
	m20basic_059.tiff
	m20basic_060.tiff
	m20basic_061.tiff
	m20basic_062.tiff
	m20basic_063.tiff
	m20basic_064.tiff
	m20basic_065.tiff
	m20basic_066.tiff
	m20basic_067.tiff
	m20basic_068.tiff
	m20basic_069.tiff
	m20basic_070.tiff
	m20basic_071.tiff
	m20basic_072.tiff
	m20basic_073.tiff
	m20basic_074.tiff
	m20basic_075.tiff
	m20basic_076.tiff
	m20basic_077.tiff
	m20basic_078.tiff
	m20basic_079.tiff
	m20basic_080.tiff
	m20basic_081.tiff
	m20basic_082.tiff
	m20basic_083.tiff
	m20basic_084.tiff
	m20basic_085.tiff
	m20basic_086.tiff
	m20basic_087.tiff
	m20basic_088.tiff
	m20basic_089.tiff
	m20basic_090.tiff
	m20basic_091.tiff
	m20basic_092.tiff
	m20basic_093.tiff
	m20basic_094.tiff
	m20basic_095.tiff
	m20basic_096.tiff
	m20basic_097.tiff
	m20basic_098.tiff
	m20basic_099.tiff
	m20basic_100.tiff
	m20basic_101.tiff
	m20basic_102.tiff
	m20basic_103.tiff
	m20basic_104.tiff
	m20basic_105.tiff
	m20basic_106.tiff
	m20basic_107.tiff
	m20basic_108.tiff
	m20basic_109.tiff
	m20basic_110.tiff
	m20basic_111.tiff
	m20basic_112.tiff
	m20basic_113.tiff
	m20basic_114.tiff
	m20basic_115.tiff
	m20basic_116.tiff
	m20basic_117.tiff
	m20basic_118.tiff
	m20basic_119.tiff
	m20basic_120.tiff
	m20basic_121.tiff
	m20basic_122.tiff
	m20basic_123.tiff
	m20basic_124.tiff
	m20basic_125.tiff
	m20basic_126.tiff
	m20basic_127.tiff
	m20basic_128.tiff
	m20basic_129.tiff
	m20basic_130.tiff
	m20basic_131.tiff
	m20basic_132.tiff
	m20basic_133.tiff
	m20basic_134.tiff
	m20basic_135.tiff
	m20basic_136.tiff
	m20basic_137.tiff
	m20basic_138.tiff
	m20basic_139.tiff
	m20basic_140.tiff
	m20basic_141.tiff
	m20basic_142.tiff
	m20basic_143.tiff
	m20basic_144.tiff
	m20basic_145.tiff
	m20basic_146.tiff
	m20basic_147.tiff
	m20basic_148.tiff
	m20basic_149.tiff
	m20basic_150.tiff
	m20basic_151.tiff
	m20basic_152.tiff
	m20basic_153.tiff
	m20basic_154.tiff
	m20basic_155.tiff
	m20basic_156.tiff
	m20basic_157.tiff
	m20basic_158.tiff
	m20basic_159.tiff
	m20basic_160.tiff
	m20basic_161.tiff
	m20basic_162.tiff
	m20basic_163.tiff
	m20basic_164.tiff
	m20basic_165.tiff
	m20basic_166.tiff
	m20basic_167.tiff
	m20basic_168.tiff
	m20basic_169.tiff
	m20basic_170.tiff
	m20basic_171.tiff
	m20basic_172.tiff
	m20basic_173.tiff
	m20basic_174.tiff
	m20basic_175.tiff
	m20basic_176.tiff
	m20basic_177.tiff
	m20basic_178.tiff
	m20basic_179.tiff
	m20basic_180.tiff
	m20basic_181.tiff
	m20basic_182.tiff
	m20basic_183.tiff
	m20basic_184.tiff
	m20basic_185.tiff
	m20basic_186.tiff
	m20basic_187.tiff
	m20basic_188.tiff
	m20basic_189.tiff
	m20basic_190.tiff
	m20basic_191.tiff
	m20basic_192.tiff
	m20basic_193.tiff
	m20basic_194.tiff
	m20basic_195.tiff
	m20basic_196.tiff
	m20basic_197.tiff
	m20basic_198.tiff
	m20basic_199.tiff
	m20basic_200.tiff
	m20basic_201.tiff
	m20basic_202.tiff
	m20basic_203.tiff
	m20basic_204.tiff
	m20basic_205.tiff
	m20basic_206.tiff
	m20basic_207.tiff
	m20basic_208.tiff
	m20basic_209.tiff
	m20basic_210.tiff
	m20basic_211.tiff
	m20basic_212.tiff
	m20basic_213.tiff
	m20basic_214.tiff
	m20basic_215.tiff
	m20basic_216.tiff
	m20basic_217.tiff
	m20basic_218.tiff
	m20basic_219.tiff
	m20basic_220.tiff
	m20basic_221.tiff
	m20basic_222.tiff
	m20basic_223.tiff
	m20basic_224.tiff
	m20basic_225.tiff
	m20basic_226.tiff
	m20basic_227.tiff
	m20basic_228.tiff
	m20basic_229.tiff
	m20basic_230.tiff
	m20basic_231.tiff
	m20basic_232.tiff
	m20basic_233.tiff
	m20basic_234.tiff
	m20basic_235.tiff
	m20basic_236.tiff
	m20basic_237.tiff
	m20basic_238.tiff
	m20basic_239.tiff
	m20basic_240.tiff
	m20basic_241.tiff
	m20basic_242.tiff
	m20basic_243.tiff
	m20basic_244.tiff
	m20basic_245.tiff
	m20basic_246.tiff
	m20basic_247.tiff
	m20basic_248.tiff
	m20basic_249.tiff
	m20basic_250.tiff
	m20basic_251.tiff
	m20basic_252.tiff
	m20basic_253.tiff
	m20basic_254.tiff
	m20basic_255.tiff
	m20basic_256.tiff
	m20basic_257.tiff
	m20basic_258.tiff
	m20basic_259.tiff
	m20basic_260.tiff
	m20basic_261.tiff
	m20basic_262.tiff
	m20basic_263.tiff
	m20basic_264.tiff
	m20basic_265.tiff
	m20basic_266.tiff
	m20basic_267.tiff
	m20basic_268.tiff
	m20basic_269.tiff
	m20basic_270.tiff
	m20basic_271.tiff
	m20basic_272.tiff
	m20basic_273.tiff
	m20basic_274.tiff
	m20basic_275.tiff
	m20basic_276.tiff
	m20basic_277.tiff
	m20basic_278.tiff
	m20basic_279.tiff
	m20basic_280.tiff
	m20basic_281.tiff
	m20basic_282.tiff
	m20basic_283.tiff
	m20basic_284.tiff
	m20basic_285.tiff
	m20basic_286.tiff
	m20basic_287.tiff
	m20basic_288.tiff
	m20basic_289.tiff
	m20basic_290.tiff
	m20basic_291.tiff
	m20basic_292.tiff
	m20basic_293.tiff
	m20basic_294.tiff
	m20basic_295.tiff
	m20basic_296.tiff
	m20basic_297.tiff
	m20basic_298.tiff
	m20basic_299.tiff
	m20basic_300.tiff
	m20basic_301.tiff
	m20basic_302.tiff
	m20basic_303.tiff
	m20basic_304.tiff
	m20basic_305.tiff
	m20basic_306.tiff
	m20basic_307.tiff
	m20basic_308.tiff
	m20basic_309.tiff
	m20basic_310.tiff
	m20basic_311.tiff
	m20basic_312.tiff
	m20basic_313.tiff
	m20basic_314.tiff
	m20basic_315.tiff
	m20basic_316.tiff
	m20basic_317.tiff
	m20basic_318.tiff
	m20basic_319.tiff
	m20basic_320.tiff
	m20basic_321.tiff
	m20basic_322.tiff
	m20basic_323.tiff
	m20basic_324.tiff
	m20basic_325.tiff
	m20basic_326.tiff
	m20basic_327.tiff
	m20basic_328.tiff
	m20basic_329.tiff
	m20basic_330.tiff
	m20basic_331.tiff
	m20basic_332.tiff
	m20basic_333.tiff
	m20basic_334.tiff
	m20basic_335.tiff
	m20basic_336.tiff
	m20basic_337.tiff
	m20basic_338.tiff
	m20basic_339.tiff
	m20basic_340.tiff
	m20basic_341.tiff
	m20basic_342.tiff
	m20basic_343.tiff
	m20basic_344.tiff
	m20basic_345.tiff
	m20basic_346.tiff
	m20basic_347.tiff
	m20basic_348.tiff
	m20basic_349.tiff
	m20basic_350.tiff
	m20basic_351.tiff
	m20basic_352.tiff
	m20basic_353.tiff
	m20basic_354.tiff
	m20basic_355.tiff
	m20basic_356.tiff
	m20basic_357.tiff
	m20basic_358.tiff
	m20basic_359.tiff
	m20basic_360.tiff
	m20basic_361.tiff
	m20basic_362.tiff
	m20basic_363.tiff
	m20basic_364.tiff
	m20basic_365.tiff
	m20basic_366.tiff
	m20basic_367.tiff
	m20basic_368.tiff
	m20basic_369.tiff
	m20basic_370.tiff
	m20basic_371.tiff
	m20basic_372.tiff
	m20basic_373.tiff
	m20basic_374.tiff
	m20basic_375.tiff
	m20basic_376.tiff
	m20basic_377.tiff
	m20basic_378.tiff
	m20basic_379.tiff
	m20basic_380.tiff
	m20basic_381.tiff
	m20basic_382.tiff
	m20basic_383.tiff
	m20basic_384.tiff
	m20basic_385.tiff
	m20basic_386.tiff
	m20basic_387.tiff
	m20basic_388.tiff
	m20basic_389.tiff
	m20basic_390.tiff
	m20basic_391.tiff
	m20basic_392.tiff
	m20basic_393.tiff
	m20basic_394.tiff
	m20basic_395.tiff
	m20basic_396.tiff
	m20basic_397.tiff
	m20basic_398.tiff
	m20basic_399.tiff
	m20basic_400.tiff
	m20basic_401.tiff
	m20basic_402.tiff
	m20basic_403.tiff

