MT-80Z User Manual

801-0246

]

81 First Street , Derby, Connecticut 06418

@ E&L instruments , incorporated

REV. -
8/82

 WALLRIN A

*****ti***************i****t********t****t*****t******tk*******tt*

FEDERAL REGULATION (PART 15 OF FCC RULES) PROHIBITS THE USE CF

COMPUTING EQUIPMENT WHICH CREATES RADIO OR TV INTERFERENCE

tt**********************t********************i****f************

E & L Instruments specifically warns the user of this instrument
thét it is intended for use in a classroom or laboratory environment
for the purpose of learning and experimentation. When bui]ding

."exper1menta1 circuits, it may emit interference that will effect
radio and television reception and the user may be requ1red to stop
operation until the interference problem is corrected. Home use of
this equipment is discouraged since the 1ikelihood of interference
js increased by the close proximity of neighbors.

~

Corrective measures:
Interference can be reduced by the following “ractices.

1) Install a commercially built RFI power filter in the power
line at the point where the cord enters the unit

2) Avoid long wires. They act as antennas

3) If long wires must be used, use shielded cables or twisted
pairs which are properly grounded and terminated

8Q7-0018

Nwzgo™

PREVFACE

We are in the midst of a microcomputer revolution.
Yesterday's science fiction is today's scientific fact. The

unigque aspect of this technological explosion 1is that the

majority of the developments have occurred within our lifetimes
and there is no sign of a slowdown.

Current efforts in microelectronics have created microcom-
puters or microprocessors on a single silicon chip containing

approximately 500,000 transistors. These chips are used in
increasing numbers of applications. Each new application puts
increasing demands on technical employees. Engineers and tech-

nicians 1in all fields, experimental psychologists, computer
programmers, educators, and physicians, to name just a few, feel
the need to expand their technical horizons to include a working
knowledge of the microcomputer.

The MT-80Z microcomputer described in this User Manual is a
complete computer designed to be used as a basic tool for both
education and product design. Unlike some computers the MT-80%Z
is a computer turned inside-out exposing all the parts to pro-
vide easy access and facilitate understanding of each section.
Once the user has gained substantial knowledge of MT-802
operation, the computer <can be wused very effectively for
learning computer interfacing, system design and programming.

The MT-80Z is based on the 2Z80* microprocessor. This chip
was introduced by Zilog in 1976. Since that time, the Z80 has
become part of a family of Zilog products; namely, the 28 single
chip microcomputer and the 16-bit 2Z8000 microprocessor. Skills
gained using the 2780 based MT-80Z will be easily applied to the
Z8 and 28000. 1In addition, 280 users also find it very easy to

use microprocessors such as the Intel 8080, 8085, Motorola 6800.

-and Mostek 6502.

This manual is the work of several people. Chapters 1-3 and
Appendix 2 were written by Larry Ryan. The Technical Appendices
were put together by Matt Veslocki and draw heavily on material
supplied <courtesy of Multitech 1International, and Zilog
Corporation. Tom Lingdell drew the schematics and the manual as
a whole was edited by Andrew Singer.

is a trademark of the 2ilog Corporation.

TABLE OF CONTENTS

Page
How To Use This Manual . ¢ « ¢ o &« & o o o s o s o o o o 1
7
CHAPTER 1l
The majOr Sections of the MT—SOZ - . . - l—l

Objectives - CPU - Control Logic - +/- Supply -

Bus Buffering - STD Bus Connector - J3 Accessory Bus -
Decoding Single Cycle - Logic Indicators/Output Ports -
Logic Switches/Input Ports - PORT SOCKET - BUS SOCKET -
Tape Recorder - Power Connector - Speaker and TONE LED -
Memory - 8255 PPI - Address/Data Display - Keypad -

PIO, CTC Expansion

CHAPTER 2

Gettil’lg Started With the MT""BOZ - . . . 0 - O 2"'1
Objectives - What You Will Need - Power Up Display -

Your First Program - Some Experimentation (ADDR, DATA,
PREV, NEXT,PC and GO Keys) -~ Using an Audio Tape Recorder

CHAPTER 3

Exp’eriments . - - - L] * * - - L] L 2 L] L] - - - * * - - L] . . 3_1
Objectives.

Experiment 1. REG Key - Viewing and Changing Z80
. Registers and Flags .« . + « o o « o @ 3-3

Experiment 2. INSERT and DELETE Keys - Program
R Editing . L] - . - . - L] L] - - - - . L] 0 3-8

Experiment 3. COPY Key - Block Copy of Memory
COntentS . - 0 - - - 3"14

Experiment
Experiment
Experiment
Experiment

Experiment

Experiment
Experiment
Experiment
Experiment

Experiment

TABLE

10.
ll.
12.

13I

0]

F

CONTENTS

CHAPTER 3 (Continued)

RELA Key - Relative Address
Calculation for DJNZ and JR

STEP Key - Single Instruction

Stepping

BRK PT Keys - Setting and Clearing

Breakpoints

.

.

.
N

BREAK - Stopping and Restarting
a Program

INTER Key - Maskable Interrupts

USER Key - Defining Your Own
Keyboard Function

Speaker and TONE LED -~ Sound
MT-807%2

from the

Logic Indicators - Port 1 and 2
Displays, PORT and BUS SOCKETS

Logic Switches - Port 1 and 2
Logic Switches

SINGLE CYCLE Operation - Single
Machine Cycle Stepping, Data Bus

Monitor

.

-

3-21
3-26

3-32
3-37

3-67.

APPENDTICES

"APPENDIX 1

Hexadecimal, Decimal, Binary Number Chart

APPENDIX 2

MT-802 Keyboard Quick Reference List

"APPENDIX 3

Z2-80 Reference Manual

i

APPENDIX 4

MT-802Z Specifications

APPENDIX 5

MT-80Z Schematics

APPENDIX 6

MT-80Z Memory Expansion

APPENDIX 7

MT-80Z Keyboard and Display

APPENDIX 8

MT-80Z Monitor Program Source Listing

APPENDIX 9

MT-80Z Parts List

ety |

Effective study requires all the senses so GO SLOW! Try to per-
form each step and note all results. After going through
Chapters 1-3 carefully you should be able to do the following:

1. Given a 280 machine language program, enter, single step and
edit the program and interpret the results.

2. Identify, locate, and describe the functions of the major
blocks of the computer.

3. Utilize the PORT and BUS sockets for input and output
interfacing.

4. Given address and number of bytes, save and load memory con-
tents on an audio tape recorder.

5. Given an improperly written program, locate program~faults
using break~points, single instruction stepping, single
cycle stepping and the bus monitor display.

6. Using the appropriate keys, observe and/or change 280
register contents or flags.

The MT-80Z User Manual is concerned mainly with MT-80Z use
and operation. It does not provide a comprehensive tutorial on
microcomputer technology. If you are just starting out, and you
find that even Chapters 1-3 present difficulties, or if you're
interested in digging deeper into this subject, ¥ i should con-
sider going through E & L's "Introduction to Fundamentals of
Microcomputer Programming and Interfacing", Modules 1, 24, and
2B of the FOXWARE SERIES, E & L Part number 345-8001(Covers the
entire set). If you are new to microcomputers, you will £find
the MT-80Z and the FOXWARE tutorials to be a superior learning
tool for your entry into the world of microcomputers. If you

are a seasoned veteran in this field, you will find the MT-807Z

to be an excellent system for product design, program design or
breadboarding.

B

¥ e
Yoase

—

s

[

i

el

u N
AR

&

How To Use This Manual

This manual was created to provide you with all the infor-
mation you need to make effective use of your MT-803%
Microcomputer Trainer. The information in the manual is pre-
sented in several ways so that, depending on your background and

level of technical expertise, you can choose the approach that
suits you best. :

If you are just starting out with micros, you should go

‘through Chapters 1 tc 3 in that order. The first chapter is a

description of the major sections of the computer. If you have
the MT-80Z in front of you now, notice that each section is
marked off and labeled for convenient recognition. The second
chapter is designed to allow you to operate some of the basic
features of the MT-80Z right away. This gives you a quick
orientation to microcomputer operation and provides an easy pro-
cedure for checking the operation of those features of the com-
puter which only require keyboard access. This chapter is
written in a detailed "by-the-numbers" fashion. Finally,
Chapter 3 consists of a series of experiments designed to give
you experience in the operation of every control and socket
except for the STD BUS socket. All three chapter are intended
for a reader without much technical background. You may find
Appendices 1,2 and 3 helpful in conjunction with the chapters.

If you are fairly familiar with micros, but not really an
expert you should probably go through Chapters 1 and 2, and then
play with the keyboard functions using Appendix 2 as a
reference. You will find the other Technical Appendices helpful.
for specific information of a more detailed nature.

If you are expert with micros, start out by looking at the

‘Specifications(Appendix 4), Schematics(Appendix 5), Keyboard

Quick Reference List(Appendix 2), and perhaps the Monitor Source
Listing(Appendix 8). You may wish to look at Chapter 1 for an
overview of the unit in written rather than specification form.

When going through the material in Chapters 1-3, you will
find that the steps you are asked to perform are presented in
highly detailed form. To make things clear, most of the

questions are answered. You could easily rush through the
material, skipping steps and consequently learning very little.

kAR

AR

IEEY Y]

I E 22 X

AEEw e

Wreaw

reean

XY

wHnEOe sAAND

bk En

cee g

sennn

WAREE L BAREM EARASL AVEER AR RS NEENS

R XX}

awann

L wawow

Toevn
PEET RS
armeae
yuvmw
-
L
rernw
men
anwew
Ay
wures

-
»ww
-
crr
LR
NE
P Y
are
>
L Y
"
..
-ae
-nw
~xw
- e
i X
-

]

-~
o
»ne
-
arw
xre
» e
.y
-ws
Y
-ne
%>
xre
xwa
-wa
-
.o
PR S
.o
-
e
EEX)
-ve
.o
sy
»aw
2. w
R
v
LE X
ES XY

.

.

-a
wn
.-
.=
v
-
-n
-
L

-

-
um

PR N YA AW AT T P E S R A ARV E I NN LA AT N R LA R E AN N LB AN S AT IR AN L AN N,

DSy el rs euANs Vesuw BEaBmE wEEEE ANBED GANAN BB P
CoNeN mEmEw X Ee]

ey aw

LYY

(R X

LR TR Y EEY]

LT

EE T

TR Y

i

ARAECEFOA S LN L ENN DO b

r43

—_—

st n gy

PR R

TR e

EwwEy oy
EE R T o
=vemy
PR X P
mwm oy -
-y .
snany o
..y .

Figure 1-1.

1-1

Top View of MT-802

PR

N

e €1 ey

CHAPTER 1
THE MAJOR SECTIONS OF THE MT-802

Introduction

The purpose of this chapter is to provide a description of
each major section of the MT-80Z Microcomputer Trainer. All the
sections described are visible and clearly marked. There are no
hidden components to prevent you from eventually understanding
how the computer operates. As each section is described, it is
advised that you locate it on your computer. The term, com-
puter architecture, is often used to describe the method 1in
which the various sections of a computer system are configured
and interconnected. The basic architecture of all computers
- consists of sections for CPU(Central Processing Unit), Control,
Memory, and Input/Output. The CPU and Control sections are the
"brains" of the system, performing arithmetic and logical pro-
cesses and regulating the flow of data within the computer.
Memory provides storage for programs and data used by the CPU.
The Input/Output or I/0 section provides the means to com-
municate with the computer. When you use the keyboard to enter
a program or generate tones from the MT-80%Z speaker, the I/0
sections of the computer are being activated.

The description of MT-802%2 architecture that follows will be

more detailed than the general computer requirements described
above. You will be taken on a guided tour of all the sections
labeled in white lettering on the top of your micr computer. If
you have jumped ahead a little and already applied power, turn
it off now so that you can sit back, hold the MT-80Z in a com-
fortable position for easy viewing, and read this manual.

Objectives

After completing this chapter you will be able to:

1. Demonstrate your understanding of MT-80Z architecture by
describing each of the major sections of the computer and
how they relate to each other.

2. - Interpret the results displayed on the Port 1 and 2 display
LEDs.

3. Interpret the 7-segment numeric display LEDs.

4. Locate and identify the function of the various interfacing
sockets.

5. Understand the basic functions available on the keypad.
6. Describe the methods of applying power to the MT-80Z.

7. Understand the use of the Port 1 and 2 logic switches.

1-2

/%

Figéle 1-2. Top Left Hand Corner of MT-80Z Panel

CrPU

This section consists of a single 40-pin chip: the 280
microprocessor. As in any microcomputer, the microprocesscr
determines the power and capabilities of the computer syste:n.
The microprocessor responds to instructions and data stored in
memory, performs the required operations and provides the
necessary control signals. The speed of the 280 1is determined
by the clock crystal located on the right-hand section of the
computer. The crystal is marked 3.579 MHz. The Z80 divides the
crystal frequency by 2 giving a CPU cycle time of approximately
559 nanoseconds. This allows the MT-80Z to add two binary num—
bers in 1little more than 2.2 millionths of a second! For

writing MT-802Z programs the Z80 instruction set is the primary
tool.

Control Logic

The control logic section is located in the top left corner
of the MT-802Z. This section provides buffering (current
amplification) for the control signals and logically derives
some additional control signals not generated by the 280. The
collection of <control signal <connections is called the

control bus. The term bus indicates that these signals are
to operate in "sync" with the computer. The buffering allows
the control signals to drive a large number of logic inputs for
circuits that are interfaced with the 280. The additional

control signals (MCSYNC, and INTAK, for example) are requilred by
the STD bus which will be discussed later.

An additional function located in the Control Logic area
deals with wuser options in the use of NMI(Non-Maskable

Interrupt). Interrupts are a scheme whereby an asynchronous
(not in sync with the 280 clock) input may interrupt the Z80 and
cause it to immediately run another program. After the

interrupt program is finished, the 280 can be easily returned
back to the main program.

The NMI is the 280's highest priority interrupt and can be
used in the MT-80Z in two different ways. First of all, lock
closely in the Control Logic area and £ind the letters NMI.
Notice also the two solder pads labeled INT and EXT. The INT or
Internal pad should be already soldered. The EXT or External
'pad should be clean. When the INT pad is soldered, the Z80 gets
an NMI from the BREAK key on the keypad. If EXT is soldered
instead, NMI is to be applied by a circuit plugged into the STD

bus socket. It is advised that only one option be used at a
time. ‘ '
+/- Supply

The +/- Supply section is located near the CPU and Control
Logic section. The purpose of this section 1is to provide an
auxiliary + voltage power supply. It is important to note that

the wall-mount A.C. adapter supplied with the MT-802Z DOES NOT
plug into this area. It plugs into the POWER jack on the right-
hand side. There is really no danger of plugging in the wrong
supply because different connectors are used. The voltages
brought into the MT-80Z are connected to regulator I.C.s and are
used to power the computer. The regulated voltages are also
available on the BUS and PORT sockets for interfacing
experiments.

Bus Buffering

In addition to the control bus, the microcomputer uses data
and address buses. The address bus consists of 16 connections

which are used to transfer information to the memory or I/0
elements. This bus is a one-way street or unidirectional and
can be used to communicate 216 or 65,536 possible memory
addresses. Each memory or I/0 element is identified by one of
these addresses. When the 280 wants to fetch information from
memory, it broadcasts the address on the address bus, and the
memory chips send back an 8-bit binary number on the data bus.

The data bus is a 2-way street or bidirectional bus allowing

8-bit data to flow into or out of the Z80. The 280 indicates
the direction via the control bus.

f

KL TP - (@ Y o - -)

[JON Sl Y SN Y NG O PN O R .5 VY 64 OO (Y O SO . D G) B A JS O I JF TN U U S JOUN U O SN SO SR U N U OO
4902 K 1W7 @ N * ®]

USRIttt iaa il SO U SUN TN OO . . I I e 1) SR UG DUV JOUN R S JSO) O - . I [U Sy
HiY sjeivwie w|e | L ¢

N1 RIGIHM
03 2083} HD 1A , .] eje __.cu

SR N (S SN R JUNNY DUNS Y AN Y IS PR UpU [OUW JS DU N

SINIRNEISN SYXTI

JR—— L et W O SOV i o . S BN JURE DR JRNOH I A S U KO U SO SRS SO N N e dm e Jm Y e e o e b
L J - A . NN . b
SIUHIR0D WYY ‘»
T ,wquz&fs L2 3 .If i AN - - T BENEE - i el e - B A I - T
- u.: SWHISLS Juunimis N T A I O A - TH A.M T B O T O A I R T
s o e SRR B S e e b e P i e} fd - 13 [SO (D SO SRS U DU SR O P IS D S (R U
ROULYROJHOD 3 g2) ®)|)} @ oo e e wiim] e
T o ’ BN LN BN]) I aH i» e ele 1 RN i ’ (o [fay | o}l tem) ’ B
B TR Y11 S A A A O O A O B U A P B BERE e elele] 1 -
T s o] B B I Y I e T T e 1T e T [N T 551 7 R VY e B O A A Y
SWLISAS BIINIWO3URTHW " L) [)
T m»m u_xcfu:‘_ J{ER 1o I . BEREEEEEEE TTTTTTrTTUTUTT - - - r 1
T ok [e (e e - T 1T e 1 ielele B BEEREERCOCRORSCERE
o R L. L1 N A A I A T I -1 DN A A A O I B B A I o T I 17
1907 YU IR - Py
LTRTE R T I lele]] el T Jenalel | | o] dalelsl T T Telele] | el T . RECE T wlw| e
T e samevwn] | L 1T ™ T el { el T T o T] BEEEREERERE
..ll\!nb».m ..s.s:.m.»m VINIHIIIN A A S O A A A B I I) T - 1 - TTT - 1
INLSWHINGD 01 L] - ‘. Ll £
T e myw e B I TTT U 1T A I O A Y O e - 111 -
T Sionovsd tonoRiteed | B %% I S T I Y i .5 ,m 1 H | T T lelel €_ «t - i T I I O

. . (L3R)] e

K J
L]
.

KA

i
]
.

X

.iil, ; Bl e R R e e b
[O B S e - . JO —] ek —
i SYWIGL . » .
INSIWYHAD LG .

SWISASDUIN 111530 *
EELNE TOHTR IH -] e @) 1 .

“ronviswvavel | ol @

(L]

[FU— e . S S - - USRS (RS WO (RSN SO DUV I ST JUUN NS N NG U U NN SAY JU Shcel a S QNN PO U N O U N bod e
SWILIEAS WDUENDD AUYHOIWIINGD [t 3 (O] LA -
s - I R A P - - o o e § o e - SU SN DR N SO YOI NN YUY SpV o [S P . R — - eofm J g B e -

e| |w i . , W fw

T SHIISAS ORY SHNIL 11177 1) »

STD Product Chart

Figure 1-3.

§130008 INOVLYE . b - AR ol e
T 1:.._:- R [O T O B (vH.... T c‘» - .- ' s ! . A b M ‘t \J‘ e
o Tswnssonv L | || - e BRERERERERERRRERENE
TR | N RER ‘s)| . 12 O
o hoewsasiowdwoidvie | 4 4 3 f | peed | jed] e @ e oy] m! A LAk] 0 I O L O T O e el
| ADWIONKIL W0aiNnD DINYY T RO O O T O S5 U0 T U U D O VO N O N U BN NN U QNN O U DU U G UL N OO o -

ELALIEL B bbb] eleleie) | I S wlel wimi 1 e - o Lor il

IS J0TRY

CES
A

£R

U

N
FA

¢
N
QTHER 8US INTER,

R
DMA CONTRCLLER

MATH

33
e
DT

Y
3
SIGNAL COX

A
s
v

TiGhS
ey
£ CARDS
i CARCS

URT SONTAOL
fad

QPTDNeUT
SPEECH SYN

QL TFUT

3
o

BLE MEMIRY

ER
3

n

DULE VO

AT 31D
Y™

GNOST

RS472

LAY QU
IRVER QUTPUT
T
TR
TEN

o
¢
se570

o
o

]

JATTERY BALKUP Raw

A0 0-2 SYSTEM

MUX & EXPANTER
I3
MOTHERICARDS

M
RTM WRITER
STIPPER LT
LOCK/ THIER
NT

A
SHTCH INFY
150LC

SYRAMIC SAM
A-D INFUT
O-A QUTPUT
T
JiSPLAY
JCOUNTER
POWER FAIL

TTL OUTRUT
TIL QP
A

STATIS Ram
PACM
TTLINOLT
CAY
DiSK
TAPE
FRN
EY
A

o]

[%)
i

o

5u
AL
A
"

s i

i

MULTIPLE VERSIONSG OF

ONE FUNCTION
— SOME MANUFACTUSE®S MAVE

YARIOUS FUST

230

5085

5300

2303

385

£802

BTN

HSE 800

AVAILASLE FUNCTIONS

& PLANKED FURCTIONS
- SOME CARDS D MJRE THAN

MATRIX CHART

$T0 CARD FURCTIONS AVAILABLE

RE

EENCAY
FURCTIORS
BIEITAL VO
FUNCTIONS
INDUSTRIAL
AXALEG D
FURCTIONS
PRERIPHENAL
INTERFACE
CONTAOLLER
FUNCTIONS
PEnL
FURCTIONS
SUPFOAT
FUNCTIONS

o

The Z80 produces very small drive currents at its pins. The
buffering amplifies the current allowing the connection of many
devices to the pins and provides protection of the 280 by
isolation.

STD Bus Connector

The STD bus connector, J1, is located on the left hand edge
of the MT-80%Z. This 56 pin edge-card connector will receive one
of the hundreds of pre-built modules built on standard 6.5 by
4.5 inch printed circuit cards which use this popular, industry-
standard bus. By inserting the card into Jl, it is auto-
matically connected to the MT-802 data, address, and control
buses and with appropriate jumpering can receive +5V and +/-12V
power. STD cards can be added to the MT-80Z to enhance its
capabilities, provide training on STD subsystems or to design
and test STD circuits. There are over 100 different manufactur-
ers producing a wide variety of STD Bus cards. Figure 1-3 shows
some of the many types of STD products available and who manu-
factures them.

Detailed information on STD products and the STD bus stan-
dard is available from the IEEE P961 STD Bus Working Group,
STDUSR (The STD User's Group), 8697 Frobisher Street, 8an
Diego, CA 92126, or E & L Instruments.

J2 - An Accessory Bus

J2 is located near the top center of the computer. It will
appear to you as two rows of holes in the printed circuit board.
The purpose of J2 is to allow you to solder an appropriate con-
nector and plug in accessories. Figure 1-4 shows J2. J2 is
similar to the STD bus in that the 40 connections will provide
access to the address, data, control and power buses.

ione aolngdt i G R

= zzzkgifde
Figure 1-4. J2 Region of MT-80Z Front Panel

»

E R R e
1 H

..
L A

L S

“ 8 u s 4w
R w e oaw
R R
I R
20 . wwuw
P EE R
Wil e W e ..
A]
T e N .o
i e m e

& L]
2 L
. ¥
A £
* L
- -
" ;
2

€

e

‘-“v"-q;-p

=l i@ sk

3
) ; N ‘
. ’ - "i ssesww - H
Sy . Tl , ‘
,1\:‘:;\;' i’ i é ’? N i' "'f' 2 e 44 a N i : { s il
HEURS e o E yp) JECUOR
E. f; i e 1 § EEERN P H : i 1S L i AL A e hrdion
SN E | i.‘. - s e F i s
L bR pe sl & A :,»’ t MDA d L ommeatass
e R L I T d Bl T "%.n«ug»m@« w«w«vc@ 0 ‘ e —r 2 i*‘““‘“‘. T
: 4 A }d(’ (R IR SR AL S "P‘V ; P
- i o ! ' =
e 1t NN !
e 3 R E A fanai st -yt
1 s 3. et
i Lo 33
R I SR TN O
R .
PR R

»\”

w(ot ”»-'r-«"vﬁ .‘M" ..

1S
H
;

BT
Ly

: $]
k> i
: 2 - :
¢ 7 i
H P oAl L A B B
: B i P I .
Pt % A,",;;i - oo
. i) -
Y i } B N S I R S S S P
umm&éﬂ ST PR e PRI frarm 340 SFF GRS SV Y o

’ . Figure 1-5. Bottom Left Side of MT-80%Z Front Panel

Decoding

The decoding section consists of two chips located between
the bottom of the STD connector and the Port socket. 'The speci-
fic purpose of this section is to use signals from part of the
address and control bus to generate the special sychronizing
pulses needed for I/0 data transfers. These pulses are made
available on the Port socket and their use is explained later.

Single Cycle

The Single Cycle section is located in the bottom left
corner of the computer. It contains two switches: one a push-
button and the other a slide switch. Through proper use of
these switches, you may "step" the Z80 one machine cycle at a
time. This slows the computer sufficiently so that you can
observe the detailed operations of the 280 and associated inter-
face hardware.

In addition to regular full speed program execution, there
are two methods provided by the MT-80Z which allow you to step
through a program. One steps by instruction and the other steps
by cycle. A single instruction can consist of several machine
cycles. Here 1is a summary of all three methods to run a
program:

1. Regular Full Speed: Press the GO key on the keypad. The
program executes at computer's full clock speed.

2. Single Instruction Step: Use the STEP key on the keypad.

Each STEP will execute several machine cycles but only one
instruction. This method 1s useful for program debugging.

3. Single Cycle: Switch the CYCLE-RUN switch to CYCLE and push

) the large push-button (PBl) switch to perform one machine
cycle at a time. This stepping method is the slowest of the
three and is most useful when you need to observe how your
hardware 1is responding to program execution. NOTE: Single
cycle will not function unless WAIT and CYCLE are jumpered
on the PORT SOCKET.

Logic Ihdicators/Output Ports

The Logic Indicators can be found next to the Single Cycle
section at the bottom of the computer. There are two rows of
8 LEDs labeled Port 1 and Port 2. Note how they are separated
in groups of four LEDs for easy binary to hexadecimal number
conversion. When read as a binary number, the least significant
bit is to the right and is numbered "0O".

The Logic Indicators provide the following functions:
1. Simple logic monitoring.
2. Data bus monitoring during single cycle operation.

3. Latching and displaying bus data sent from the %80
using the series of OUT instructions.

Simple logic monitoring is done by connecting wires from
L0-L7 of the PORT SOCKET to any logic output from the MT-80% or
interface circuits. The results are viewed on the PORT 2 LEDs.
The LED marked 0 will correspond to L0 on the PORT SOCKET and
LEDs 1-7 correspond to L1-L7.

Data bus monitoring uses the PORT 1 display. These LEDs are
permanently wired to the data bus and are not available on the

PORT SOCKET. What this means is that for every 280 machine.

cycle, the Port 1 LEDs will display the data traveling on the

bidirectional data bus. Used in conjunction with Single Cycle
operation, the bus monitor can enable you to observe the con-

tents of the data bus each time you push the CYCLE button (PBl).
This is the fastest way for you to learn how the 280 actually
works. It is also an excellent microcomputer troubleshooting
method.

Port 1 and Port 2 Logic Indicators can be used as output
ports. This use of the Logic Indicators allows you to latch and
display register or memory data sent to the data bus as a result
of an OUT instruction. The format of the OUT instruction
requires a port number. The port numbers available are FD, FE,
and FF. Using appropriate jumpers on the PORT SOCKET, you can
assign any of the three addresses to the ports.

1

Another feature of Port 2 allows you to split the 8-bit
display into two separate 4-bit displays. When split, the
halves are designated P2X and P2Y; port 2X and port 2Y. The
4-bit ports can be assigned different port numbers.

Logic Switches/Input Ports

The Logic Switches, 1located at the right of the Logic

Indicators, consist of two DIP switches marked Port 1, Sl, and
Port 2, S2.

The Logic Switches provide the following functions:

1. Port 2 -- Apply a logic 1 or 0 to PORT SOCKET terminals
2. Port 1 and 2 -- Supply data tc the 280 as input ports.

Digital experimentation often requires a steady-state logic
level (1 or 0) applied as an input to a circuit. The Port 2
(S2) logic switches can be used for this purpose. The eight
different switches control logic levels at PORT SOCKET terminals
50-S7. These terminals can be connected to the inputs of inter-
facing circuits.

Both ports 1 and 2 can be configured as input ports to the
Z80. Port 1 (Sl1l) is already wired to the data bus. Used as an
input port, it requires a jumper between Pl EN (i :rt 1 enable)
and IN FF on the port socket. This assigns the r -t address FF
to port 1. An instruction such as IN A,(FF) will input the

switch settings as an 8-bit binary number to the 280
accumulator.

The configuration of port 2 as an input port requires some
jumpering between the PORT SOCKET and BUS SOCKET. Port 2 may be
addressed FD or FE by applying Jjumpers on the PORT SOCKET.
Another feature of port 2 allows you to split the port into two
independent groups of four switches each. When split, port 2
becomes 4-bit port 2X (P2X) and 4-bit port 2Y (P2Y).

Note the numbering on the printed circuit board near the
switches: 76543210. These numbers designate the position the
switch will occupy on the PORT SOCKET (S2) or data bus (Sl).
For example, S2 switch 0 corresponds to PORT SOCKET connection

SO. The switches themselves may have additional numbering:
87654321. These numbers still correspond to conventional
positioning, i.e., least significant bit to the right. To

select a logic 1, move the rocker toward "OPEN" and for a
logic 0, move it toward the number.

Port Socket

The Port Socket is located just above the Logic Indicators.
It consists of 33 vertical rows of connectors to give you access
to power, LEDs, and switches. It allows the jumpering required
to establish addresses for Ports 1 and 2. The socket can be
divided into four sections:

1. Supply

2. Step

3. Output Ports 1 & 2
4. Input Ports 1 & 2

These sections correspond to the organization of the socket
from left to right. Before you ready any further, examine the
label on the socket and shown in Figure 1-6 below.

AAON00BBEA088RARG|EN aaaioneo
N T Vi3es il
3 AT Y 7654353 T ¢ E X L

I : ¢ : | 3 F

SUPPLY |STEP OUVTPUT PORTS 2 & 1 INPUT PORTS 2 & 1

Figure 1-6. Port Socket Label

The Supply section provides access to the MT-80Z internal
+5V power supply and ground for powering interface circuits.
These circuits c¢ould be mounted on the large breadboarding
socket (SK-10) mounted above the Port Socket. The connection
marked STD +5 is connected directly to pins 1 and 2 of the STD
bus edge connector socket. This gives you the option of pro-
viding +5V power to the STD bus from the MT-80Z power supply by,
jumpering to +5V.

The two connections in the Step section are CYCLE and WAIT.
They must be jumpered together before the SINGLE CYCLE feature
will function. Without the Jjumper, you could supply a WAIT
input to the 280 from some external circuit.

. OUTPUT Ports 1 & 2 provide connections to control the Port 1
and 2 Logic Indicators. Their functions are outlined below:

1. L7-L0: Inputs to the Port 2 LEDs. These inputs are buf-
fered and latched by chips Ul5 and Ulé6.

2. OUT FD, OUT FE, OUT FF: These connections are outputs from
the Decoder section. They are used to establish the
addresses of the Port 1 and Port 2 displays. Also, they can
be used with other interface circuitry.

1-10

-~

T

3. Pl CL: This is the symbol for Port 1 Clock. The term clock
is used here to signify an enabling pulse for the Port 1
latch chip. This connection is an input.

4. P2X CL, P2Y CL: These are the symbols for Port 2X Clock and
Port 2Y Clock. Remember that Port 2 can be split into sec-
tions X and Y. This 1is allowed by having two separate
inputs for the port latches.

Input Ports 1 & 2 are very similar in operation to the out-

put ports described above. The major difference 1is that switch
outputs are provided instead of display inputs. Here are the
functions:

l. §87-S0: Outputs from DIP switch 82, Port 2. The voltage
levels at these connections will be +5V or ground depending

on switch positions. Remember that Sl switches are already
interfaced to the data bus.

2. 1IN FD, IN FE, IN FF: These outputs from the Decoder section
are used to establish addresses for the Port.l and 2
switches and other interface circuits. Note that IN FF is
active-low and should be used with Port 1.

3. P2X EN, P2Y EN, Pl EN: These are the ENABLE inputs for the
tristate buffers that interface the switches to the data bus
or S87-80. Note that one of them, PORT 1 ENABLE, is

active-low. It will be most convenient to "map" this port
at address FF using the active-~low IN FF.

Bus Socket

The Bus Socket is the 1long, narrow white socket located
above the SK-10 breadboarding socket. All but two of the con-
nections shown on the label are wired directly to the STD BUS
edge connector. The +12V and -12V connections are used to pro-
vide these voltages to the STD bus AUX +V and AUX -V. The 12V
source comes from the Supply section when the optional

" +/ - power adapter 1is used. Jumpers are used to make the

appropriate connections.

There are three main groups of connections on the Bus

Socket. Access to these bus groups 1is necessary to interface
other components to the MT-8072Z.

1. Al5-A0: The computer address bus.
2. D7-DO: The computer data bus.
3. SY RST to REFRESH: The computer control bus.

1-11

o R O

Bl < xC»

Figure 1-7. Bus Socket Label

Tape Recorder Interface - EAR, MIC

There are two miniature phone jacks located at the top right
corner of the MT-80Z. These jacks, marked EAR and MIC are con-
nected to a cassette tape recorder so that you may save and load
programs. By using the LOAD and DUMP keys on the keypad, the
binary information stored in memory is converted to tones that
may be recorded or played back. This feature is a time saver
that can prevent you from having to reload programs using the
keypad. Most programs load in a short time. 1In fact, an entire
2K of memory can be saved or loaded in 2 MIN and 14 SEC.

To make the connection to your tape recorder, plug in cables
from EAR on the MT-80Z to the earphone output on the recorder
and from MIC on the MT-80Z to the microphone input on the
recorder. Cables suitable for this purpose reguire miniature
phone plugs at one end, and plugs suitable for connecting to
your cassette recorder at the other end. Typically, such cables
are readily available at Radio Shack or hi-fi equipment stores.
An experiment in Chapter 2 provides detailed experience with
this feature.

Power Connector

Next to the tape recorder jacks, there is a special connec-
tor for +5V power. This is where you plug in the A.C. wall
mount adapter supplied with the MT-80Z. Be sure to use only the
supplied adapter as it has been specially designed for the
heavy duty vrequirements of the computer. The MT-802 has no
ON~-OFF power switch. As soon as you plug in the adapter the
computer is powered up and running.

1-12

2%

/

Speaker and TONE LED

The small loudspeaker and green TONE LED are located to the
right of the 7-segment displays. Both of these are interfaced
to the Z80 bus through use of the 8255 Progtamaole Peripheral
Interface chip. This is the large, 40-pin chip near the TONE
LED. To make the speaker work, a program is written that uses
time delays to form an audio frequency square wave. By adjust-—
ment of the program, various tone frequencies can be produced.

The TONE LED is connected so that it operates along with the
speaker.

The speaker "beeps" each time you press one of the keys on
the keypad. This annunciator tone provides some aural feedback
to indicate that the key press actually made contact. In the
experiments you will learn how to change the "beep" duration and
frequency or even eliminate it.

When you use the audio tape feature, the MT-80%Z speaker
makes the data recording or playback audikle. This makes it
possible for you to confirm that cassette data 1is playing back
at an appropriate level for the computer.

HALT LED

The red HALT LED located Jjust below the TONE LED indicates
when the 280 is in a HALT state. After executing a HALT
instruction, the 280 outputs a HALT signal which lights the LED.

When halted the 280 stops fetching and executing further
instructions.

The visual indication provided by the HALT LED is useful
when you need to know when the HALT in your program has been
executed. Your programs could have a "bug" that causes the com-
puter to appear hung up and unresponsive. By placing a HALT
instruction at strategic locations in your program, you can find
out how-much of the program executes normally.

Memory
The MT-80Z uses a combination of ROM(Read Only Memory) and
read/wrlte memory referred to as RAM. RAM (Random Access

Memory) is volatile. This means that when power Is turned off,
the stored information is lost. When you use the keys to store
a program or data, the information is being stored in RAM. The

ROM retains its memory regardless of whether the power is on or
off.

The memory chips used in the MT-80Z are marked U6, U7 and
U8. Socket U7 may be empty. It is there if you want to expand
the memory capacity. U6 1is an EPROM (Eraseable-Programmable
Read Only Memory) that permanently stores all the operating

software (programs) that the MT-80Z requires. This software is

1-13

generally called the Monitor Program or System Monitor. This
rather large program (2K) has as its major task, interpreting
key depressions and providing appropriate data to the 7-segment
displays. The Monitor contains many small subroutines that you
can call from the programs you write. For example, if you would
like the speaker to beep at certain points in your program or
set up a special display, the Monitor subroutines can make your
programming job much easier.

The details of memory expansion and the Monitor program
"listing are beyond the scope of this Chapter. Please consult
the Technical Appendices 6(Memory Expansion) and 8(Monitor
Source Listing) for this information. The MEM-80, Full Memory
Expansion Package, E & L Instruments P/N 200-8020 is available
from E &L for expanding the memory of your MT-80%Z.

The technique used to help you gain a mental picture of com-
puter memory allocation is called a Memory Map. The map in
Figure 1-8 shows how the MT-80Z memory 1is allocated. The
programs you write and store in memory are located some-where
between 1800 and 1FFF. AN IMPORTANT NOTE: Even though the
Monitor is located in EPROM (0000-07FF), it still requires some
RAM for stack and "scratch pad" use. You should avoid using the
area shown on the map starting at 1F9F and ending at 1FF3. The
Monitor automatically sets the user stack pointer at 1F9F. Any
time you use PUSH, POP, CALL, RET, and interrupts, the stack
memory area is affected.

1-14

Vie T

1800

1F9E

. 1F9F

1FAE
1FAF

1FF2
1FF3

1FFF

STACK AREA

MONITOR STACK

USED BY
MONITOR

USER RAM

Figure 1-8.

MONITOR
EPROM
us

EXPANSION

unused

USER
RAM
us

EXPANSION
u7

L L . . L .

unused

MT-80Z Memory Map

1-15

0000

07FF
(800

OFFF
1000

17FF
1800

1FFF
2000

2FFF

FFFF

8255 PPI

The 8255 PPI(Programmable Peripheral Interface) is Ul4, the
large 40-pin chip located above the 7-segment display. This
parallel I/0 chip can provide three separate 8-bit I/O ports, 2
ports with "handshaking” or a single 8-bit bidirectional port.
The various modes are programmable, making this one of the more
versatile I/O chips currently available.

The 8255 is committed to the task of keyboard input and
display output. Other uses are the Speaker and TONE LED, Tape
Recorder 1/0, and the USER key on the keypad. The Chapter 3
experiment on the USER key gives you the opportunity to write
and test the software required to operate the PPI.

If you wish to expand the I/0 capabilities of the MT-803%,
- you can add the Zilog PIO (Parallel Input/Output) and CTC
(Counter/Timer Circuit) chips. A description of the 8255 can be
found in Technical Appendix 7. I/0 expansion details can be
found in the MIO-80, CTC/PIO Expansion Package for the MT-80%Z, E
& L Instruments P/N 200-8030.

As it does for memory organization, mapping helps to give a
clear picture of how the port numbers (I/0 addresses) are
allocated. Figure 1-9 shows a map of the ports. Remember that
the Port 1 and 2 Logic Indicators and Switches are mapped by the
jumpers inserted into the. Port Socket. The 8255 PPI, PIO and
CTC are already wired to fixed I/0 addresses. In the programs
that you write, try to avoid using these fixed addresses.

1-16

—

A/

PPI PORT A 00
PPI PORT B 01
PPI PORT C 02
PPI CONTROL 03
UNUSED
CTCO 40
CTC1 41
cicez 42
C1C3 43
UNUSED
PIO A DATA 80
PIO B DATA 81
PIO A CONTROL 82
PIO B CONTROL 83
UNUSED
USER FD
USER FE
USER FF
.Figure 1-9. MT-80Z Port Map

Port Number

PORT
SOCKET

Address/Data 7-Segment LED Diéplay

The Address/Data display consists of six 7-segment displays
covered with a red filter. They are located just above the

keypad for easy viewing. In addition to memory addresses and
contents, the display provides a prompting message, a sign-on
message and a warning message. The displays are grouped into a

4-character address field and 2-character data field as shown
below:

l
.‘~
A
e
A
ey
4
L
.
o
A

N |

-
e iy
L]
'\.
. | oo
"u
|

ADDRESS FIELD DATA FIELD

Figure 1-10. 7-Segment Display Format

Numbers are displayed in hexadecimal form. This is a com-
pact method of representing a binary number which is easy to
convert. A conversion table can be found in Appendix 1. The
MT-807 address consists of 16 bits which require 4 hex digits:
0000-FFFF. The data bus 1is 8-bits (1 byte) and requires two

digits: O00-FF. The use of address/data and other displays will.

be explained in the experiments.

The 7-segment display is designed to show the digits 0-9.
By careful use of the segments (and a little imagination), many
other characters can be represented. A diagram on the bottom of
Page 4 in Appendix 7 lists some of the characters the MT-802Z can

display in 7-segment form. Figure 1-11 shows some of the more
common characters yocu will use. :

1-18

29

The dlsplays are controlled by the Monitor ©program.
Each segment 1is individually software controllable so that you
may write a program that can display any combination of segments
and decimal points. Technical Appendix 7 provides
detailed information on how the PIA 1is used to light variocus
segments.

T

pc————. D ATA/REGISTER FUNCTION

RESET| AF BC DE HL | ADDR DATA PREV NEXT
L 1) Led [(2 1sfjp L L4 L L §
BREAK| AF’ Bc’ DE” HL” | RELA INSERT DELETE COPY
L1y et [s) (e (7)) LJ [[L1 ¢
INTER| IX 1y sP 11IF | BRE PT BRE PT LOAD DUMP :
C Iy el [o] [A] (B} L L1 L4 Ld 3

. l FLAGS——‘__—'—] Eovmwamsmesmansy :
USER Y sz.h PNc sz.W -PNC’ REG | PC STEP GO §
L1y [(=1 [4y d 1 L1 §

Figure 1-12. MT-802Z Keypad
Keypad

The keypad consists of 36 pushbutton keys arranged in logi-

cal groups. The general categories of keypad functions are.

listed below:

1. Input programs

2. Display memory and all Z80 register contents

3. Preset any 280 register

4. Run programs

5. Set and clear program breakpoints

6. Edit memory contents

7. Move blocks of data from one part of memory to another

8. Single step by instruction

9. Calculate relative addresses for the 280 instructions JR
and DJINZ

10. Load and store memory contents on tape

11. Halt program execution

12. Interrupt the Z80

13. Utilize a user-definable key

14. Reset the computer

1-20

This User Manual provides information about the keypad on
four levels of increasing detail. The first and most condensed
level is the Keyboard Quick Reference List located 1in Appendix
2. The current chapter(Chapter 1) decribes the basic function
of keys and their purpose Using the Chapter 3 experiments, you
can learn the keypad functions in depth by actual use. The
Technical Appendices provide the ultimate level of detail. This
is the information that reveals a computer's innermost secrets.

The keypad is organized into three logical groups of keys.
They are the Interrupt Group Keys, the Data/Register/Flags Group
Keys, and the Function Group Xeys. What follows is a functional
description of the keys in each of these groups.

1. Interrupt Group Keys -- RESET, BREAK, INTER

a. RESET supplies a system reset to the 280
microprocessor. This causes the Z80 to stop executing
a -program or HALT state and begin fetching and exe-
cuting instructions that start at address 0000: the
starting address of the Monitor program. The MT-80Z is
‘initialized just as it is at power-up and will display
READY on the 7-segment display. Pressing this key will
not erase your progranm. It can, however, change your
stack pointer and write some data at the high end of
RAM (see HMemory Map). /

{

b. BREAK: The BREAK key allows vou to stop a program to -~
examine registers and memory [contents. Also, you can”
make changes to registers and memorzjand then restart
the program from the point of interruption. It is an
input tc the 280 NMI, Non-Maskable Interrupt. This is
the equivalent to a CALL 0066. BREAK causes the “T-803
to begin executing instructions at address 0066 in the
Monitor program. If you press the key during execution
of a program, the following happens:

o) The 780 finishes the current instruction and stops
executing your program.

o The address display indicates the Program Counter
contents at the time of program interruption.

o The data display indicates the memory contents at
the displayed address.

o] All 7-80 register contents are saved.

o A check is made to see if your stack pointer is

out of system stack area.

1-21

You cannot use the BREAK key to interrupt the Monitor.
If you do, the warning SYS-SP occurs. The MT-802z
issues the SYS-SP warning when your program attempts to
use the system stack area 1FSF to 1FAE. The user stack
area begins at address 1F9E(See the MT-80Z Memory Map).
If the MT-80Z is NOT running your program it is running
the Monitor program and the stack pointer should be in

the system stack area. The BREAK function "assumes"
you are BREAKing a user program and always tests the
stack pointer to be sure that it is 1F9E or lower. If

BREAK is pushed when the Monitor is running, the stack
pointer will be above 1F9E and cause the warning

message.
c. INTER causes an execution of the lowest level of
interrupt if certain conditions are met. INTER is con-

nected directly to the INT pin of the 2-80. This is
the Maskable Interrupt which, if enabled (unmasked),
' will cause a RST 38 to execute.

Here is what happens when you press INTER:

STEP 1: The 280 begins fetching and executing
instructions at Monitor Location 0038.

STEP 2: The Monitor routine at address 0038 uses the
contents of RAM address 1FEE and 1FEF to form
an address. This address is called a vector.
When the MT-80Z is powered-up, the Monitor
stores the data 66 at 1FEE and 00 at 1FEF.
This would form the vector address 0066.
This is also the interrupt address for the
NMI BREAK key.

"STEP 3: The MT-80Z begins executing instructions at.
the address formed by 1FEE and 1FEF.

The INTER interrupt may be enabled and its vector
address set using the keyboard or instructions in your
program. This enables you to set up maskable interrupt
service software that is invoked by pushing INTER.

Data/Register/Flag Group Keys -- 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, D, E, F, AF, BC, DE, HL, AF', BC', DE', HL', IX,
Iy, sp, 1 IF, SZ H, PNC, SZ H', PNC', REG

The keys in this section are all dual purpose except for the
REG key. When the numeric keys are used to type in hexade-
cimal numbers such as addresses and data, the key top indi-
cates which key to use. When the REG key 1is pushed, the
keys are reassigned to the job of viewing register contents
and flags and the label above the key on the keyboard indi-
cates which key to use.

1-22

3. Function Group Keys -- ADDR, DATA, PREV, NEXT, RELA, INSERT,
DELETE, COPY, SET BRK PT, CLR BRK PT, LCAD, DUMP, PC, STEP, GO,
USER.

!

a {?DDR, DATA, PREV and NEXT are the function keys used to

enter and edit programs, examine memory contents, and
modify registers.

' ADDR - This key signals that a memory address is
(to be input next. The 7-segment display shows
memory address and data.

DATA - This key 51gnals that data for memory or
registers is to be input next. It is normally
pressed after the ADDR key. DATA 1is also used
after the REG key to modify registers and flags.

(3)! PREV - This key causes the displayed address to
! decrement to the previous address. 5. ! ~ The data
display is updated each time the address is
changed to reflect the contents of memory or
registers at the new address. This key is used in
the REG mode to back up to the previous register

or flag displayed.

(4) NEXT - This key causes the displayed address to
increment to the next address. The data display
is updated each time the address is changed to
reflect the contents of memory or registers at the

new address. NEXT is used in th REG mode to
advance to the next register or flag group
displayed.

b. RELA provides valuable assistance when you write 280

' programs .using JR (Jump Relative) and DJNZ (Decrement

and Jump No Zero) instructions. These extremely power-

ful instructions consist of two bytes. The first byte

is the operation code and the second is called a rela-

tive address. A relative address points to a location

in memory by referring to its own location. The rela-

tive address must be a signed 2's complement number in

the range +127 (7F Hex) to -128(80 Hex). When either

the JR or the DJNZ instruction is executed, the address

that it needs is formed by adding the relative address

in the instruction to the instruction's own location in

memory . Thus, the address formed 1is "relative" to

wherever the instruction occurs in memory. When

hand assembling 280 programs, relative address calcula-
tion is a very difficult and error prone task.

The RELA key will calculate the relative address and
store it in memory following the JR or DJINZ operatlon
code. The only restrictions on the use of this key is
that address calculation must be within MT-80Z RAM and
not exceed +127 or ~128.

1-23

d.

INSERT and DELETE are program editing keys that make it
easy for you to modify programs. One of the most
frustrating errors in computing 1is to enter a 1long
program and discover that an instruction was omitted by
mistake. INSERT allows vou to insert instructions or
data into an already stored program. It does this by
inserting at a specified address and moving up all the
subsequent memory contents to the next highest address.
DELETE works in the opposite fashion by removing one
byte and "closing in" all the remaining memory contents
to the next low address.

The range of memory operated upon by INSERT and DELETE
is 1800 to 1DFF. In fact, anytime these Kkeys are used
the ENTIRE contents of this 1,535 byte address range is
affected. For every DELETE key use, an 00 is stored in
a high address starting with 1DFF. If you started at
1800 and pushed the DELETE enough times, the entire
range of memory would be filled with zeros. INSERT
pushes memory contents beyond 1DFF into outer space and
they will be lost. ‘

COPY allows you to "block move" large groups of memory
contents from one address block to another. Such a
move only copies memory and leaves the original source
intact. This function comes in handy when you want to
reuse part of your program's memory without losing a
program. Using COPY, thé program can be copied to a
different area of memory, allowing you ©¢O enter new
data and instructions in the area it previously
occupied.

The SET BRK PT (Set Break Point) and CLR BRK PT
(Clear Break Point) keys provide a powerful software
debugging tool. Breakpointing allows you to execute a
program one segment at a time. If a program fails to
execute properly, it is often difficult to determine
which segment is working properly and which segment is
failing. By setting break points at strategic
locations, you <can execute a program segment by
segment, observing register contents and flags in bet-
ween segments and using this information to identify
program faults.

1-24

LOAD and DUMP functions provide a means for using an
audio cassette tape recorder to store and playback data
Oor memory contents. Any block of memory can be named
as a data file and the DUMP function transmits it
serially to the record input of the tape recorder.
Many files may be stored on a single cassette. When
retrieval of the file becomes necessary, the LOAD func-
tion will ask for the file name and bring it in from
cassette to memory.

Before using these functions, you must provide your own
cassette recorder and cables. Suitable cables are
available at Radio Shack and hi~fi stores. The EAR and
MIC Jjack on the MT-802Z must be connected to the
earphone output and microphone input of the recorder.
The volume control of the recorder should be set to
maximum.

PC allows you to set the user program counter register.
The program counter is a 1l6-bit register that contains
the address of the next instructions to be executed.

When the MT-80Z is powered up, or RESET, ong_of the
initializing procedures is to set the user's\ program
counter to the lowest RAM address or 1800. It is
assumed that you will enter your programs at starting
address 1800. If you wish to start execution of your

programs at another address, use the PC key to enter
the new address. .

The PC key is used mainly in conjunction with the GO
key. For example, a program starting address is set

using PC and then GO 1is pushed to start program
execution.

GO is used either to start program execution at an

address in the user program counter or to start the
execution of certain keyboard functions.

In order to use the GO key, it is first necessary to

have a wvalid address showing on the address/data
display. The two main methods for doing this are: (1)
ADDR key operation and (2) PC key operation. After the
required address is properly dlsplayed a push of the
GO key starts your program running.

If program execution is stopped with the BREAK key, you
can resume by pushing GO. If you are using STEP to
single step your program, GO can be used to start full
speed execution. ‘

1-25

i. STEP is similar to GO except that it executes only a
single instruction for each key press. You can use
ADDR or PC keys to establish the starting address for
single stepping. The STEP function should not be con-
fused with the hardware SINGLE CYCLE feature.

The STEP function is a powerful debugging tool which
allows you to follow the "flow" of a program and
discover where problems exist. The ability to view
registers 1in between instructions will help you to
understand how the 2Z80 microprocessor WOrkKS.

If your program affects the Stack Pointer register so
’ " that it points to the system stack area (1lFAF-1F9E),
STEP will cause the warning SYS-SP on the address/data

display. If the Stack Pointer 1is changed by your
program to non—-existent RAM, the warning Err-SP will be
displayed.

je ~The USER key is connected directly to pin 38 of the
8255 PPI chip. The 8255 1is the large 40-pin chip
located above the address/data display. On the 8255,
pin 38 is bit 6 of port A. The MT-80Z has Port A
mapped at I/0 address 00.

In order to use the USER key, it is necessary to write
a program that will input port 00 to the 280 accumula-
tor and test bit 6. If USER was not pressed during the
input instruction, bit 6 will be a 1, otherwise it will
be 0.

USER is a user-defineable key. With proper software,

it can allow you to create a new function not presently
available on the MT-80Z keypad.

PIO, CTC Expansion

The MT-80Z can be expanded to include two Z80 support chips:
a P10, Parallel I/0 interface and a CTC, Counter Timer Circuit.
They can be mounted in the space above the 7-segment display.
The addition of these chips provides the following increased
functions:

1. PIO - Two 87bit I/0 ports or one 8-bit bidirectional
I1/0 port.

2. CTC -~ Four event counters or interval timers.
Connection to these functions is made using the 40-pin PIO
CTC I/O0O BUS located next to the PIO socket area. The MIO-80,

CTC/PIC Expansion Package for adding these chips 1s available
from E & L Instruments, as E & L Part Number 200-8030.

1-26

\
5t
CHAPTER 2

GETTING STARTED WITH THE MT-802

Introduction

In this chapter, you are given detailed procedures for using
the MT-802Z to perform some of the most used functions. These
procedures will help you get acquainted with the general

features of the MT-802Z and provide a starting place for learning .
to operate the computer. You will need an MT—SOZ,rfEé wall—"

mount adapter power unit supplied with the MT-807 \ and, if
possible, an audio cassette tape recorder. Even if a recorder

is not available, you can still accomplish almost all of the
objectives of this chapter of the User Manual.

Objectives

After successful completion of the activities in this
chapter, you will be able to do the following:

1. Apply D.C. power to the FOX using the wall-mount
) ~ adapter.)

2. Enter and verify a 280 program.
3. Use the REG function to modify a Z80 register pair.
4. Run a program.

5. Understand and use the following keys: ADDR, DATA,
. PREV, NEXT, RESET, PC and GO.

6. Use a cassette tape recorder and the DUMP and LOAD keys'
to save and load a program.

Power Up

Remove the top 1id of the MT-80Z and set it up in front of
you. There are many exposed electrical connections on the front
panel of the computer. None of the voltages are high enough to
cause electrical shock. However, 1if you use some conducting
devices such as metallic pens, Jjewelry, tools or other 1lab
equipment, take necessary precautions to avoid shorting the
exposed electrical connections.

Locate the wall-mount adapter power unit supplied with the
MT-802Z. Plug the connector into the POWER jack located in the
top right corner. Now plug the adapter into a wall outlet. You

should see the power up display scrolling to the left on the
address/data display LEDs.

."/;"\.
[P
IR
K) ' ’
/‘\/,

You will have the following display:

S i B A N
OO o

The MT-80% is now "ready" for operation.

Your First Program

The program used in the following example will cause a 2kHz
tone from the speaker. By proper use of the keypad functions,
you will enter the program and then set the length of the tone.

Here is the program:

MEMORY INSTRUCTION

ADDRESS CODE MNEMONIC COMMENTS

1800 CD CALL CALL subroutine TONEZ2K
1801 E2 LO ADR which expects HL to
1802 05 HI ADR contain tone duration
1803 76 HALT ~ then halt.

The subroutine TONE2K is located in EPROM at address 05E2. It
causes the speaker to beep at a 2kHz rate for a number of

periods determined by the contents of register pair HL. The
main use of this tone 1is for recording data on the audio
cassette tape. We are going to "borrow" it for a short while

for a different purpose. :

Let's load the program and HL register pair. The keys used are
ADDR, DATA, NEXT, PREV, REG and number/register keys.

STEP 1: Push ADDR. The speaker should beep (1lkHz) indi-
cating a key-press. The address/data display
should light the decimal points (D.P.'s), in the
address field indicating that an address may be
keyed in. This 1is called the "address input
mode". :

STEP 2: Push number keys 1800. This is the address of the
first byte of the program. The display will show
1800 in the address field. Our data field was F5,
your data field could be different because the
data is undefined at this time.

Loy

M,

C‘

o

STEP 3:

STEP 4:

STEP 5:

STEP 6:

STEP 7:

Push DATA. The D.P.'s should shift to the data
field indicating that data may be keyed in. This
is called the "data input mode".

Enter the first byte of the program by pushing
keys C and D. The display should look like this:

(xrir
(L0 Ly L |

L J L

Push NEXT to enter the next byte of the program.
The address will increment to 1801. Note that the
D.P.'s still indicate that you are in the data
input mode.

(ol o
R = N A i

Enter the
appears:

second byte, E2. The display now

Hon o C3
R I I A Y I

In similar fashion, 1i.e., pushing NEXT, then
entering data, load the rest of the program. The
displays for the remaining bytes are shown below:

O e Y
(L L

Samy,
3
iy,
"-J.
-
-

il

2

STEP 8:

STEP 9:

T

—,

In this step you will use the PREV key to view the
previous memory contents. PREV 1is opposite in
function to NEXT. Push the PREV key. You should
see the previous address and memory contents:
Continue with the PREV key until you are back to
address 1800. By use of PREV and NEXT, you can
verify memory contents to make sure that your
program is correctly loaded. 1If you see the wrong
memory contents on the data display, make sure you
are in the DATA input mode and key in the correct
byte.

The program 1is now loaded. Before running the
program, it is necessary to set register pair HL.
Start by pushing REG. The display shows:

S I

g N

~~MJ[\;ndicating that you may examine or change a

STEP 10:

register's contents, the 1"register view/alter
mode". Now push the HL key. It has a 3 on top of
the key and the letters HL above it. Don't use
HL'. The data field now displa: HL. and the
address field, the current HL contents. No D.P.'s
are lit. T

Push DATA. The D.P.'s indicate the register that

is in the alter mode. In this case, it is the L
register. Our display looked like this, but yours
may be different: .

N
ror o AL

Now press the 0 key. Note that both digits with
D.P.'s changed to 2zero even though you pressed

only a single key. The entire 8 bits of the L
register are now zero.

STEP 11:

STEP 12:

STEP 13:

STEP 14:

Push NEXT. pid you see the D.P.'s shift Lo the
left? ©Press the 4 key. H now centains a 04. The
HL. register pair now contains 0400 as shown by the
display:

BN AN
S B B

. SN

[

114
L

The PREV key also works in the register view/alter
mode. Go ahead and push PREV. The results should
be opposite that of the NEXT Kkey. The D.P.'s
should be shifted to the right. You could change
L to something else now if you wanted to.

Now that the program and registers are loaded,
it's time to run the program and see (hear) the
results. For this procedure, the PC, GO and RESET
keys are used.

Push PC. The display should indicate:

or a program counter value of 1800. This is the.

starting address of the program. Try pressing the
ADDR and DATA keys alternately. You should see
the D.P.'s moving back and forth from the address

field to the data field.

Push GO. You should hear the key press tone, then
a longer 2kHz tone. The display will be blank and
the HALT LED 1lit. The 280 HALT condition was
caused by the last instruction of the program. A
"HALT"ed Z80 cannot provide segment and digit out-
puts for the display or read the function keys.
Try pressing some of the function keys. The
MT-80Z appears to be inoperative. One key will
bring it back to life: RESET.

g4

-

s

I,

[
-
7
-~

STEP 15: Push RESET. What happens? You should see the
- familiar power on "rEady" display and the HALT LED
off. The RESET key is directly wired to the 2780
_ and cannot be ignored by the HALT condition. The
MT-80Z is now under control of the Monitor program
and is waiting for you to press a key. Press PC,
GO and RESET a few more times to get some practice

running a program.

Some Experimentation

Let's try a few different values of HL and observe changes
in the tone duration. With your program still in memory, use
the REG key tc change HL to 1000. Use the same procedure shown
in Steps 8, 9 and 10 for making the change. Run the program.
How long is the tone? We clocked it about two seconds.

Now try HL=2000. The tone should be about four seconds.
Here is a hexadecimal arithmetic problem for you. The displaved
HL data is a hexadecimal number. If 1000 causes a 2 second
tone, what HL contents will cause a 1 second tone? Try your
calculation by entering the HL value and running the program. A
chart follows which gives some HL values with the corresponding
time for the tone duration.

HL VALUE TIME (approx.)
0400 .5 seconds
0800 1 second
1000 2 seconds
2000 4 seconds
0000 15 seconds

Note that the smallest number (0000) gives the longest time.
The subroutine TONE2K actually "counts down" or decrements the
HL register pair to determine tone duration. When the wvalue
0000 is decremented once, the following result is obtained:

0000
- 1
FFFF

The resulting high number, FFFF, causes the long duration.

Before you leave this section, try .the values in the table
above and then some of your own. S

Using the Tape Recorder

What you will need for this section is the MT-80Z, a stan-
dard audio cassette tape recorder, blank cassette and at least
one cable fitted with a miniature phone plug at one end and, at
the other end, a connector that will mate to the cassette
recorder MIC input and SPEAKER output. It is very likely that a
cable with a miniature phone plug on each end will suffice.

The steps that follow outline the procedure £for storing
(DUMP) and loading (LOAD) a program on audio cassette tape. It
is assumed that you still have in memory the program listed at
the beginning of this chapter. If not, refer to Steps 1 through
7 and load the program.

STEP 1: Connect an audio cable from the tape recorder MIC

input to the MT-80Z MIC jack located at the top
right corner.

STEP 2: Install a cassette tape in the recorder and
advance the tape BEYOND THE LEADER. Leaderless
tape cassettes are available and are especially
designed for audio cassette tape computer data
storage. Use a good quality of tape if you want
to reduce the likelihood of errors in your stored
programs. Most general purpose tapes have varying
amounts of leader. If the recorder has a counter,
push the counter reset button so that all zeros
are showing. :

STEP 3: Push DUMP. The data display indicates "-F" which
is how the FOX asks you the file name for the data
to be recorded on tape.

STEP 4: The file name can be any 4-digit hexadecimal
number from 0000 to FFFF. Let's use BEEF; a hex
number that 1is also a word. Using the number

keys enter the file name BEEF. The display
should look like this:

STEP 5:

STEP 6:

STEP 7:

STEP 8:

STEP S:

Push NEXT. The "-S" in the data display is for
starting address. Our program starts at address

1800, so enter: 1800

(O O
LT Ld L

-

Push NEXT. The last question the FOX asks is the
ending address ("-E") of the block of memory to be
stored on tape. Our program ends at address 1803.

Enter 1803 to get the following display:

(DOm0 O
LT I

“sn

Your input to the tape DUMP function

established the following:

a) File name -~ BEEF
b) Starting address -- 1800
¢) Ending address --1803

has

Start the tape recorder in the RECORD mode and
after the tape is rolling, push GO. If your tape
recorder has an adjustable record level, you may.
have to experiment a few times to make a proper
recording. Most cassette recorders have an automa-

tic level control.

You will hear some tones from the speaker.
the tones stop and the display shows:

e

-
[1

3

[LI _ [, LI

Stop the recorder. If all has gone well,

file, BEEF, has been saved on tape.

2-8

After

the

STEP 10:

STEP 11:

STEP 12:

Let's test the recording. Rewind the tape to the
starting place or 000 if you have a counter. Now
change the cable from MIC to EAR on both recorder
and computer.

Push LOAD. The MT-80Z now asks for the file name:

IR i O

A N "

PO

‘-

indicates that the MT-80Z retained the file name
from the last DUMP operation. The D.P.'s indicate
a file name input mode. BEEF is the correct file
name, SO no change 1is necessary.

Push GO and start the tape recorder in the play
mode. The display will change indicating each
stage of the tape LOAD process.

o First process: wait for the "mark" tone

O.. Second process: file name found

A I Y R
N Ny I | [
o) ,Thira process: loading:file

© Fourth Process: fjije loadegd Correctly

ABO T IE

If your results for the last few Steps are not the same ag those
given, YOu may be experiencing SO0me tape Problenms. Here are g
few facts that May help you track down Some possible Problens.

a. Incorrect Fecord level control, Automatic record level

control, Sometimes calleg ALC is idea}l for computer
use. The small, inexpensive Cassette recorder Usually

has thig feature.
b, Playback volume inust be Nearly maximum,

C. If you hear the tones Played back through the MT-807
Speaker, they are being Properiy received at the EAR

input. The audio going into the MT-807 is NoT DIRECTLY
COUPLED TO 7THE SPEAKER.

d. Watch out for tape leader!

CIf your resultsg match thoge Oof Step 12 above, you Probably have

a good recording. The real test ig to temporarily remove power
from the MT-807 to "lose" the Program from the volatije RAM,

the Program fronp tape,. This time, 7ou will have Lo enter the
file name "BEEF" in step 11. Don't forget to Set HL before
running the Program.

2-10

CHAPTER 3
EXPERIMENTS

Introduction

This chapter contains 13 experiments designed to give you hands-on

experience with the MT-80Z. The previous chapter started you off with some
general functions. The experiments in this chapter cover the remaining
keyboard functions, I/0 ports and SINGLE CYCLE operation.

Most of the experiments require only the MT-80Z and the wall-mount adapter

power supply. Some of the experiments require a length of #22 or #24 solid
hook-up wire. Prior to starting each experiment, be sure to read the section
in Chapter 1 that describes the keys or functions used.

Experiment List

-

W N e
.

REG key - viewing and changing Z80 registers and flags

INSERT and DELETE keys - program editing

COPY key - block transfer of memory contents

RELA key - relative address calculation for DJNZ and JR

STEP key - single instruction stepping

BRK PT keys - setting and cfearing’break points.for program debugging

BREAK key - stopping and restartiné a program without losing registers
and stack

INTER key - maskable interrupts

USER key - defining your own keyboard function

Speaker and TONE LED - sound from the MT-80Z

Logic Indicators - Port 1 and 2 LED digplays, PORT and BUS SOCKETS

Logic Switches - Port 1 and 2 logic §yi%cﬁé§’g;a the PORT and BUS SOCKETS

SINGLE CYCLE operationm - single stepping by machine cycle and data bus
monitoring '

3-1

7

Objectives

After successful completion of the experiments in this chapter you will be
able to do the following:

1. Understand and use the follewing keyé: REG, INSERT, DELETE, COPY, RELA,
STEP, SET BRK PT, CLR BRK PT, BREAK, INTER, USER, CYCLE-RUN (S3) and PB1,
the single cycle stepping switch. >

2. Use the PORT and BUS SOCKETS to connect an I/0 device to the MT-80Z.

3. Use the PORT LEDs and 1logic switches (S1 and $2) to perform I/0
operations.

4. Use the SINGLE CYCLE switches to step a program and monitor the results of
each cycle on the PORT 1 LEDs.

EXPERIMENT 1 - REG KEY

The purpose of this experiment is to help you learn how to use the REG
function to observe or modify any of the MT-80Z registers or flags.

This_function can be used when you want to do any of the following:

Set the value of any register prior to running a program.

Set or clear any of the flags prior to running a program.

Observe the results in the registers after a program has been run.

Observe the flags after running arithmetic or logical instrdctions.

Monitor flag and register results between instructions while single
stepping using the STEP key.

STEP 1:

STEP 2:

STEP 3:

Apply power and press the REG key. The rEg- indicates that all
the number keys are now register and flag keys.

Select AF by pushing the AF key. Now, you will see the letters
AF in the data display and the register pair (accumulator and
flags) contents are shown in the address field. These two steps
are used when you wish to view register pair contents.

Let's Took at the rest of the registers. Push BC, DE, HL. What
happens in the data display? Now push AF'. This is the first
of the alternate set of Z80 registers. Look closely at the
data display. You will see a decimal point (D.P.) indicating
the "prime" or alternate AF.

STEP 4:

.__Nf~;;;£—§s

Y

STEP 6: .

STEP 7:

o

Look at the rest of the alternate register set:
HL'. There will be a D.P. indication on all these.

BC', OE' and

=~ (- i
oo orTL

-

Now select IX. It is difficult to make an X using the seven
segment display. Here is how the MT-80Z does it:

e (L
L LI [I

Push IY. It's easier to display a Y isn't it? Now push SP.
The stack pointer (SP) has been set by the monitor at power-up
to the address displayed.

L

STEP 8:

i

The left two digits display the Z80 I register. This register

- is used for certain MODE 2 interrupts to form the high 8 bits of

the 1interrupt vector address. The right-hand digit (least
significant digit) of the address display shows the status of

- interrupt flip-flop IFF2. This is an interrupt mask. When it

is 0, maskable interrupts are enabled. The display shown above
indicates dinterrupt vector high address 00 and interrupts
disabled. Anytime you apply power or push RESET, the Monitor
program establishes this condition. '

Push SZ*H. This is the first of the flag keys. The display
shows the four high order bits of the flag register. From left
to right: They are: Sign, Zero, Unused bit, Half carry.

P
[(I

The data display shows FH for "Flag High". The “ones" indicate
that the sﬁ Z and H flags are set. The flag display is binary.
Now press «PNC. What do you see?

The FL or “flag low" display format is (left to right) unused
bit, parity, N (subtract flag) and carry.

53

STEP 9:

STEP 10:

Push SZsH'. What is different about the data display?

The D.P. in the data display indicates the alternate flag set.

g

Y R
LS A Y B | [

Now try «PNC'. Again, the D.P. indicates the alternate flag
set.

The DATA key is used to modify a register. Let's modify the F
register of register pair AF and check the flags to see if they
change. Push AF then DATA. What do you see?

The D.P.s indicate the F register is in the modify mode. The
data/register keys are now used to enter data. Push the 0 key.
What did you observe? *

The entire F register is now “zeroed" with only one press of the
0 key. The leading zero is automatically entered. Now, check
flags SZ*H and *PNC to verify the zero state of the flags. Do
this by pushing REG then SZ-H and -PNC keys. Does the FH and FL
display agree with the change made in the F register?

Both FH and FL should indicate all zeros.

STEP 11:

STEP 12:

STEP 13:

How can you modify the entire register and flag set?

By use of NEXT (and PREV), you can easily step through the
registers and modify contents. Start with AF and change every
register to 00. Push REG, AF and DATA. Push O to change the F
register. Push NEXT. 0id you see the D.P.s shift?

Push 0 and NEXT again. What did you observe?

The next register pair in line is BC. The D.P.s indicate the
C register is ready for modification. Continue with O and NEXT
until you have completed IsIF. It is not necessary to zero the
flags. Do you know why? o

The flags were zeroed when AF ‘and AF' were modified. Check them
by using NEXT.

Continue to check each register pajrﬁfzygushing NEXT. Are they
all zero?

A1l registers should display zeros.

Push RESET. Check the SP register. Is it still zero?

Whenever RESET 1s pushed, the monitor program automatically
resets the SP to 1F9F. Check the other registers. What do you

find?

A1l the other registers should be zero.

3-7

EXPERIMENT 2 - INSERT AND DELETE KEYS

The purpose of this experiment is to help you learn how to use INSERT and
DELETE to change memory contents. You can use these keys to insert added
instructions or delete unwanted instructions from your programs. These keys
will save considerable time when you need to modify a long program.

STEP 1: Enter the following test data into memory. This list of numbers
is not a program. The numbers will make it easy to recognize
the inserting and deleting operations.

- ADDRESS DATA
1800 11
1801 22
1802 33
1803 44
1804 55
1805 66
1806 77
1807 88
1808 99
1809 AA

- _d

In the steps that follow, you will insert the number FF at address 1804 and
"push" the remaining numbers to the next highest address. The result of the
operation should look like this:

STEP 2:

STEP 3:

ADDRESS DATA
1800 11
1801 22
1802 33
1803 44
1804-\\\\\\\ﬂLFF'ﬁ——-inserted
1805—_ 55
1806§ 66
1807 77
1808— g5
1809:::::::::;99
180A AA

Use ADDR and select address 1803. This address precedes the
address to be inserted. The INSERT function moves up to the
insert address.

With address 1803 displayed, push INSERT. What do you observe?

Address 1804 is disp]ayéd with contents set to 00. What do the
D.P.s indicate?

The MT-80Z is ready for the new data. It has already moved the
test data from 1804-1809 to 1805-180A. A 00 has been inserted
at address 1804.

STEP 4:

STEP 5:

STEP 6:

\

Enter the FF. The inserted 00 has been changed to FF. This
completes the insert operation. What would happen if the FF was
not entered?

The test data would show a 00 had been inserted.

)

Use ADDR and NEXT to verify the insert operation. What do you
find?

Your check of address 1800-180A should match the table above.
How would you insert a DB at address 18007
The procedure is to select the previous address 17FF, use INSERT

to move up to address 1800 and enter BB. Try this procedure.
Do your results match the listing below?

ADDRESS DATA
1800 BB <«——inserted
1301:::::::::::11 |
1802 22
1803::::::::::33
1804.‘\\\‘\\\ﬁk44
1805 FF
1806::::::::::55
1807 66
1808::::::::::77
1809-\\§‘*88
180A 99

\

1808

=

3-10

o

In the next 2Vsteps, you will delete the inserted BB and FF to restore the
test data to the condition at the beginning of the experiment.

STEP 7:

“"—~—h\/—‘;;;;ess 1800 contains 11.

STEP 8:

To delete the BB at address 1800, first use ADDR to select

address 1800. Next, push DELETE. What do you see?

Use NEXT to check the remaining test

. data. What are the results?
ADDRESS DATA
-~ 1800 1]1<——BB was deleted

1801
1802
1803
1804

™~
PO

m S
L

WL

1805 55

1806?66

1807 77

1808 ?88

1809 99

180A”””—”J’AA ¥
/

1808

How would you delete the FF now at address 18047

Push DELETE.
What did you find?

Select address 1804.
1800-1809.

Check memory contents

The table should be in its original condition.

- * 3-11

STEP 9: What happens if you try to delete the memory contents of address
O5FE?

Nothing happens. Address O5FE is ROM and cannot be changed.
The display will not indicate any changed data in memory.

STEP 10: What happens if you try to insert data at address 17FE?
Again, nothing 1is changed. The display address, 17FE did not
increment to the next address as before. This is an indication
that you are trying to insert data in ROM and beyond the range

of the INSERT and DELETE functions.

The range of INSERT and DELETE 1is 1800-1DFF. Each time you use these keys,
this entire range of memory is affected.

NOTE: If you have more than one program in memory, an INSERT or DELETE
affects the other programs.

In the next steps, you will prove the memory range of INSERT and DELETE.
STEP 11: Store the following test data in memory:

ADDRESS DATA ’

10F8B 11

. 1DFC 22

10FD 33

10FE 44

h 10FF 55
1E00 66

1E01 - 77

3-12

STEP 12: Insert an FF at address 1DFD and check the memory contents.

What do you find?

The previous contents, 55, of 1DFF were not moved up to 1E00.

ADDRESS DATA
1DFB 11
1DFC 22
1DFD FF

1DFE 33

/!

1DFF 44
i“\\\s\‘*‘1ost

1E00 66

1E01 77

STEP 13: Now, delete the FF at address 1DFD.

been affected?

ADDRESS DATA
1DFB 11
$
IDFC:::::::::::.ZZ
IDFE"’/”,,;r44
1DFF
1E00 66
1E01 77

,The delete function

Ny

unaffected

How has address 1DFB-1EQ1

00 ~inserted

unaffected

inserts 00 at 1DFF each time DELETE is
pressed. Address 1EQO and beyond are unaffected.

3-13

EXPERIMENT 3 - COPY KEY

The purpose of this experiment 1is to help you learn how to use the COPY
function. COPY will "block move" a copy of memory contents from one section
of memory to another.

STEP 1: Load the test data shown below. This is not a program, but
easily recognized data to experiment with the COPY function.

ADDRESS DATA
1800 00
1801 11
1802 22
1803 33
1804 44
1805 55
1806 66
1807 77
1808 88
1809 99

In the next 8 steps, you will block move a copy of memory contents from
addresses 1800-1809 to address 1900-1909 and verify the operation.

STEP 2: Push COPY. What do you see?
The -5 in the data display is a prompt. This means the MT-80Z
is "asking" for the starting address of the block of memory to
be copied. The D.P.s indicate the address input mode.

STEP 3: Enter 1800 as the starting address. The display should look
like:

.
HHOL -3

3-14
/3

1 td

STEP 4:

STEP 5:

STEP 6:

STEP 7:

STEP 8:

STEP 9:

Push NEXT. What happens?

The data display shows the next prompt: -E, the ending address
of the block of memory to be copied.

Enter 1809. So far, the COPY function "knows" the stérting and
ending address of the test data. ’

Push NEXT. What is this prompt "asking"?
The prompt, -d, is for destination starting address.
Enter the destinationvaddress 1900.

Push GO to complete the copy operation. What do you observe on
the display? . '
What is displayed after the GO key is pressed depends on whether
the copy was toward a higher address or a lower address. In our
case, copy was from low to high and the aisplay shows the
starting address of the destination and the contents:

AT ro
't.f.‘_‘i L‘l i LI

Use NEXT to verify the copy.of the test data. What did you
find?

An exact copy of the test data should be stored at address
1900-1909. '

3-15

In the remaining steps, you will block move a copy of memory from address
1900-1909 to address 1800-1809 and verify the operation.

STEP 10: Change the contents of 1900-1909 to the following:

ADDRESS DATA
1900 AA
1901 BB
1902 cc
1903 DD
1904 EE
1905 FF
1906 10
1907 20
1908 30
1909 40

STEP 11: Push COPY and answer the -S prompt by entering the starting
address 1900.

STEP 12: Push NEXT and answer the -E prompt by entering 1909.
STEP 13: Push NEXT and answer the -d prompt by. entering the destination
address 1800. The COPY function "knows" that we want to copy

memory address 1900-1909 to 1800-1809.

STEP_14: Push GO. What do you see. Is it the same display the last GO
- operation?

3-16

- (17
} SNy LS

The display should look like:

oMo

g.\

This is the last address of the copied block of memory. Also,
the data display shows the contents at that address. This is a
normal display when copying from higher addresses to lower
addresses.

3-17

EXPERIMENT 4 - RELA key

The purpose of this experimentAis to help you learn how to use the RELA key to
calculate the second byte of the Z80 JR (Jump Relative) and DJINZ (Decrement
and Jump No Zero) instructions. The second byte of these instructions is
often referred to as the relative address, relative offset, or displacement.
The format for these instructions is shown below:

INSTRUCTION ~
CODE MNEMONIC COMMENTS
18 JR dis Jump relative
38 JR C, dis Jump relative if carry true
30 JR NC, dis Jump relative if carry not true
28 JR Z, dis Jump relative if Z flag true
20 JR NZ, dis Jump relative if Z flag not true
i0 DJINZ dis Decrement B and jump if B# 0

In the mnemonic, dis refers to displacement. The displacement is a 2's
comp]ément signed number ranging from a decimal +127 to -128. In hexadecimal,
the range is from 7F to 80. The MT-80Z uses the second byte of the jump
instruction to determine the destination address of the jump. After the
displacement (second byte) of the instruction has been fetched, the Z80
replaces its program counter (PC) contents with program counter + displace-
ment. Tﬁe'new PC value causes the jump. These instructions are used often
—Because they are relocatable, i.e., the instruction does not contain an
address. In contrast, JP label is a 3-byte instruction which contains an
absolute address as the last two bytes. This instruction is written to
operate at only one memory location. ’

3-18

1.8

Consider the following program:

INSTRUCTION |
ADDRESS CODE MNEMONIC COMMENTS
1800 3E LD A, 00 A=0
1801 00
1802 3C INC A A = A+l
1803 D3 OuT (FF),A Output register A to port FF
1804 FF b
1805 18 JR dis Jump relative to address 1802
1806 -

This program sets A to zero, then continues to increment and output. The
effect, if seen, is a high-speed binary counter on port FF. the second byte
of the JR dis is missing and needs to be calculated before the program can be
completely loaded.

In the steps that follow, you will calculate the second byte (dis) of the JR
instruction using RELA. The program will not be run. Don't despair! There
are "flashy" programs in some of the other experiments.

STEP 1: Load the program up to, and including address 1805.

STEP 2: Push RELA. Do you see the -S? This is a prompt "asking" you to
enter the source address or the address of the JR instruction.

STEP 3: Enter the 1805. Now push NEXT. What happened in the data
display? ' ’

The -d is a prompt "asking" for the destination address of the

Jjump. What .is this address? In order to keep incrementing we
must jump each time to address 1802.

3-19

STEP 4: Enter 1802. Now, it's time to calculate the displacement. Do
this by pushing GO. What is yocur observation?

The display shoulq look like this:
f"ll.."ll"llf.' o
B I I By B |

_‘_____].ﬁz}e is what happéned. RELA calculated dis as FB and stored it

' in memory directly after the JR instruction. Real service!

Your program is now complete.

STEP 5: The range of the jump is limited. Let's try to calculate a
displacement that is out of range to see what happens. We will
assume the JR instruction is located at address 1900 and the

destination address of the jump is 1800. This is a 256 byte
distance. Is this out of range? >

STEP 6: Push RELA and enter the source address 1900.
STEP.7: Push NEXT and enter the destination address 18uJ.

'STEP 8: Push GO to calculate. What happened?

— . U U Y 15

We tried to go too far. -Err is always displayed when the range
for these instructions is exceeded.

3-20

69

EXPERIMENT 5 - STEP KEY

The purpose of this experiment is to learn how to use the STEP key for
single instruction steppihg of a program. Computer programs usually run
automatically at CPU clock speed. Single stepping slows the computer to allow
you to view I/0 operations and changes in register contents as they happen.
Also, you can trace the sequence of instructions being executed in complicated
programs full of conditional instructions. Single stepping makes it easier
for you to locate program faults (bugs).

In this experiment, you will load and execute a simple program using both
single instruction stepping (STEP) and full CP U - speed (GO). Also, you
will learn how to set up a simple output port using the PORT 1 LEDs. You will
need a short length of #22 or #24 solid hook-up wire.

STEP 1: Apply a jumper between PORT SOCKET connections OUT FF and PICL.
The Jjumper connects the Port 1 clock input (Port 1 LED
interface) to the output address control for port FF. The
Jjumper *“maps" the Port 1 Logic Indicators to port address FF.
The Port 1 Logic Indicators are permanently interfaced to the
data bus. No additional wiring is needed.

STEP 2: Load the program listed below. It should look familiar if you
have done Experiment 4. '

INSTRUCTION
ADDRESS CODE MNEMONIC COMMENTS
1800 3E LD A,00 A=0
1801 00
1802 3c IN A A = A+l
1803 D3 OUT (FF),A Output register A to Port FF
1804 FF
1805 18 JR dis Jump relative to address 1802
1806 FB

3-21

7/

¥

1

STEP 3:

~ STEP 4:

STEP 5:

STEP 6:

What is the function of this program?

The first instruction sets A to 00. The remaining instructions
increment A, output A to port FF, then loop back to continue
incrementing and outputting. The jumper on the PORT SOCKET
causes the Port 1 Logic Indicators to latch and display register
A after every OUT (FF),A instruction.

In thisistep, you will run the program at full speed. Push PC,
then GO. What do you see on the display? What do yog‘seeron
port FF (Port 1 Logic Indicators)? Can you explain why?

The program instructions do not include QUT instructions for the
7-segment displays. Therefore, it 1is normal for them to be
blank while your program is running. A1l the Port 1 LEDs appear

"to be on because the program is running at high speed. The

incrementing and outputting is too fast to observe.

Stop execution of the program by pushing the RESET key. Can you
explain the appearance of the Port 1 LEDs?

The LEDs display the register A contents 1last output before
the RESET key was pushed. In the steps that follow, you will
single step the program.

Push PC and observe the 7-segment display. What is the result?

3-22

STEP 7:

STEP 8:

STEP 9:

STEP 10:

STEP 11:

The address 1800 is the first address of the program and the 3E
in the data display is the code for the first instruction.

Push STEP. What do you see on the 7-segment display?

When STEP was pushed, the first r_g:lay’ce instruction LD A,00
(3E00) was executed. The display | shows the next address and
jnstruction to be executed: 1802 3C. '

Push STEP. What is displayed?

1803 D3

Push STEP. What is displayed?

1805 18, the JR dis instruction. Can you predict the next

instruction and address displayed after one more STEP?

Push STEP. What is displayed?

1802 3C is the destination of the relative jump instruction.

Why didn't the STEP key step one address each time it was

pushed?

3-23

73

STEP 12:

STEP 13:

STEP 14:

STEP 15:

280 instructions can be one to four bytes in length. STEP is
single instruction stepping. The change in address will depend
entirely upon the length of the instruction stepped.

So far, we have been concentrating on the 7-segment display.
Let's turn our attention to the Port 1 Logic Indicators wired as
output port FF. Note the number displayed (in binary) on the
output port LEDs:

Push STEP to execute the INC A instruction. The next instruc-
tion to be stepped is OUT (FF),A. What should happen to the.
port LEDs after the next STEP?

Push STEP. What happened?

The binary display incremented by one. Thié is proof the OUT
(FF),A instruction was executed.

How many times do you have to push STEP to increment the port

display?

Continue to push STEP and determine the number of instructions
or STEPs for each change in the port display.

The program loop consists of three instructions: INC A, OUT
(FF),A, and JR dis. The answer is three pushes.

3-24

STEP 16:

STEP 17:

STEP 18:

When using STEP, you can view and change registers and flags
between steps. The port LEDs and the A register should contain
the same number. Use REG and AF keys to display the AF register
pair. What do you see?

The A register (accumulator) value should match the port LED
display. Push DATA then NEXT to place the A register in the
input mode. Set A to 00 by pushing the 0 key.

Resume stepping by pushing PC, then STEP. Continue to push STEP
until the port LEDs change. What is the new port display?

The 00000001 displayed 1is due to the "“zeroed" accumulator being
incremented and output to port FF.

3-25

75

EXPERIMENT 6 - BRK PT KEYS

The purpose of this experiment is to help you learn how to use the SET BRK
PT and CLR BRK PT keys to set and clear program breakpoints. A breakpoint is an

address in a program where you want to témporari]y stop execution. When
execution is stopped, you can view and change register contents and flags.
After observations and changes are made, program execution can resume from the
breakpoint by using STEP or GO.

A breakpoint is useful for debugging (correcting) a program. If a Tong
program fails to execute properly, a good strategy is to "divide and congquer".
A breakpoint can be placed in the middle of a program to stop execution. When
stopped, registers, flags and I/0 ports can be examined to verify program
operation. ~ If the first program segment checks okay, then place a breakpoint
in the middle of the untested segment. By continuing this process, you can
reduce the size of program segment being debugged.

In this experiment, you will load a simple program and piace a breakpoint
to help observe and verify program operation. Each time the breakpoint stops
the program, you will observe registers and an output port. You will need a
short length of #22 or #24 solid hook-up wire.

STEP 1: Connect a jumper between PORT SOCKET connections OUT FF and

P1 CL. This step is the same as STEP 1 of Experiment 5. The
jumper "maps" the Port 1 Logic Indicators to port address FF.

3-26

STEP 2:

Load the following program:

INSTRUCTION
ADDRESS CODE MNEMONIC COMMENTS
1800 3E LD A,00 A=20
1801 00
1802 47 LD B,A B=A
1803 2F CPL A=Rh
1804 D3 OUT (FF),A Output A to port
1805 FF FF
1806 3D DEC A A =A-1
1807 04 INC B B = B+l
1808 18 JR dis Jump relative to
1809 FA address 1804
STEP 3: What is the function of this program?
The first two instructions set registers A ancd B to 00. The CPL
instruction at address 1803 compliments the A register. The
next four instructions form a loop which has the following con-
tinuous operation: output A to the Port 1 Logic Indicators
(port FF), decrement A, increment B, then Jjump back to output.
STEP 4: Push PC, then GO. What do you see on the 7-segment display?
What is the appearance of the Port 1 Logic Indicators (port FF)?
This program does not output to the 7-segment display. It is
normal for the 7-segment display to be blank. The port LEDs
appear to be steadily lit. Are they?
e A R—
,;m -

3-27

No. The A register (accumulator) is continually being decre-
mented to the output. The speed of program execution is too'
fast for you to observe what is actually happening.

In the next four steps, you will set a breakpoint in the middle of the program
address 1804, and observe the effects of the first four instructions.

STEP 5: Select the breakpoint address: push ADDR, then enter 1804,

STEP 6: With address 1804 displayed, push SET BRK PT. What changed on
the display? -

The MT-80Z indicates a breakpoint address and instruction code
by lighting all six D.P.s.

(07 4
R A N |

A,

S,

(L

STEP 7: Now that the breakpoint 1is set, let's run the first four
instructions. Push PC to display the starting address: 1800.
With the address, 1800 displayed, push GO. What do you observe
on the 7-segment display? Which- instructions have been
executed? ‘

When the program stops (breaks) the display shows the next
instruction T0 BE EXECUTED. The display should indicate
1806 3.d. This is the address and first byte of the FIFTH
instruction. The first four have been executed.

3-28

- STEP 8:

Use the REG key to check registers A and B. What do you find?

A -

A = FF and B = 00. What do the Port 1 LEDs (port FF) display?

We observed a binary 11111111, This agrees with the current
register A contents. By use of the REG function and observation
of the port LEDs, you have verified the program operation up to
AND INCLUDING the breakpoint.

In the next three steps, you will observe the operation of the instructions in
the loop: OUT (FF), A, DEC A, INC B, and JR dis and back to OUT (FF), A. Note
that the breakpoint is in the loop. This means that each press of the GO'key
will cause the MT-80Z to make one pass through the loop.

STEP 9:

STEP 10:

Press PC. The display should be 1806 3.d. If it is not, use
the ADDR key and enter 1806. This will be the first instruction
after the break.

Push GO. What do you observé on the 7-segment display and the
Port 1 Logic Indicator?

The 7-segment display did not change. Do you know why? Hint:
observe the Port 1 LEDs. ‘

3-29

STEP 11:

STEP 12:

STEP 13:

When you pressed GO, the following instructions were executed:

DEC A, INC B, JR dis and OUT (FF),A. The program stopped and’

the MT-80Z is waiting to execute the DEC A again. The Port 1
LEDs (port FF) now displays 11111110; a value one less than you
had before GO was pushed.

Continue to push GO and observe the changes on the Port 1 Logic
Indicators. What do you see?

We observed the port LED display decrementing. Breakpoints must
be set at the address of the FIRST BYTE of the instruction code.

In the next step, you will observe the result of setting a
breakpoint at an incorrect address.

Change the breakpoint to address 1805. This address holds the
second byte of the OUT instruction. If the display is 1806 3.d,
push PREV to view 1805 F.F. and push SET BRK PT. If the display
js other than 1806 3.d., use ADDR and enter address 1805. The
old breakpoint is removed. Push NEXT to prove it. What do you
see?

There are D.P.s on the data field only. The breakpoint has been
removed.

Push GO. What do you observe on the 7-segment display and port
LEDs? Why?

The incorrectly set breakpoint is not functioning. The program
is executing the loop at high speed.

3-30

£/

oV

STEP 14:

STEP 15:

Breakpoint removal is done using CLR BRK PT (clear breakpoint).
Use the ADDR and number keys to select the breakpoint address: '
1804. When selected, you should see all D.P.s 1it, indicating
the breakpoint. ’ :

Push CLR BRK PT. What do you see?

The display, F.F.F.F. F.F. indicates breakpoint removal. Use
ADDR to select 1804 again. Do you see proof of breakpoint
removal?

Only four D.P.s are 1it, indicating a normal address input mode.

Here are rules governing the use of breakpoints with the MT-80Z:

1. Only one breakpoint may be set at a time.

2. When the program is stopped, you may observe and change registers.

3. Breakpoints cannot be set in ROM.

4, Breakpoints must be set at the address of the FIRST BYTE of the
instruction code.

5. Breakpoint addresses are displayed by lighting all six D.P.s.

6. Breakpoint removal is verified by the display F.F.F.F. F.F.

3-31

EXPERIMENT 7 - BREAK KEY
The purpose of this experiment is to learn how to use the BREAK key to
stop program execution at any time to observe and change registers and flags.
Also, you will learn how the BREAK key differs from RESET key operation.
In this experiment, you will load a program, use BREAK to stop execution,
change register contents and resume execution. Also, you will observe the
difference in using the BREAK and RESET keys.

STEP 1: Load the following program:

INSTRICTION

ADDRESS CODE MNEMONIC COMMENTS
1800 cD CALL TONEZK Call a subroutine in
1801 E2 the monitor at address
1802 05 05E2
1803 76 HALT after the subroutine is

compieted, halt.

This is the same program used in the Chapter 2 familiarization experiment.
Do you recall the function of this program?

This two-instruction program calls a subroutine, TONEZK, stored in the
MONITOR ROM, executes it and halts. TONEZK uses the value stored in HL to
determine the duration of the tone from the speaker. In Chapter 2, you
changed HL values and observed tone duration. Here is some new infor-
mation regarding TONE2K: register C contains the value used to determine

the tone frequency.

3-32
73

a4

STEP 2:

STEP 3:

STEP 4:

STEP 5:

Use the REG function and set HL = 0000. Remember from Chapter 2:
HL = 0000 gives the longest tone duration.

Push PC. What is displayed?

.

1800 c.d., the user P.C. is the starting address of the program.

Press GO, then BREAK. You should have let the tone beep for a
few seconds. What do you observe on the display. Why .is the
address displayed not in User RAM?

After pressing BREAK, the program in execution is interrupted
and the user Program Counter (P.C.) and memory data is dis-
played. This displayed address is "pointing" to the next
instruction to be executed when you resume (GO) from the BREAK.
The address displayed will be in the range: O05EA to 05F3. This
range is the ROM subroutine loop that generates the tone. There
is no way of knowing exactly where you "froze the clock" by
pushing BREAK. We observed 05Ed 1.0.

Use the REG function to view HL, C and SP. Note the values:

HL = , C = , SP = . Can you explain these
values?

3-33

STEP 6:

STEP 7:

We observed the HL value, 6D2E. The subroutine, TONEZK, was
counting this value down toward zero until you pressed BREAK.
If the tone stops and the MT-80Z halts (HALT LED), HL has
reached zero. You should observe the value, 1F in C. This
value was 1loaded by the subroutine and corresponds to the
frequency, Z2kHz. The Stack Pointer contains the value 1F9D.
The CALL instruction of your program caused the Z80 to "stack"
the return address. To view the stack contents, push ADDR. The
contents of stack address 1F9D is 03. Push NEXT. The contents
of stack address 1F9E is 18. The return address is 1803.

Change the contents of register C to FF.

Push PC, then GO. Listen to the tone for a few seconds then
push BREAK. What did you hear? Why?

The lower tone is due to the larger value in C. The tone fre-
quency is related to C by the following:

Frequency = 1/2 ((44+13C) x clock period)

For C = 1F and a clock period of 559 nS:

1/2 ((44+(13)(31)) 559 x 1079)
2001le

What is the tone frequency for C = FF?

266Hz.

3-34

84

STEP 8:

STEP 9:

STEP 10:

STEP 11:

STEP 12:

Change C for a frequency higher than 2KHz. Which value did you
choose? C = Frequency =

Push PC, GO, then BREAK to verify the higher frequency. HWe
chose OF for a frequency above 5KHz. If your tone has stopped
é]ready, push RESET, PC, GO, then BREAK.

What 1is the value of HL? It should be lower than the value
noted in Step 5.

We indicated a value of 20DE at this step.

Push PC, then GO and let the tone run until it stops. It stops

when HL has been decremented to zero. What is the state of the
HALT LED? '

The HALT LED 1lights after the Z80 executes a fALT instruction.
There are two methods of recovering from a HALT condition:
1. Press BREAK
2. Press RESET

Press BREAK. What happened to the HALT LED? can you explain
what is shown on the 7-segment display?

When you press BREAK, the HALT condition is removed. The
7-segment display shows 1804 F.5. After the HALT instruction at
address 1803 has been executed, the user P.C. "points" to the
next memory address.

13-35

STEP 13:

STEP 14:

STEP 15:

STEP 16:

Use the REG function to check the contents of HL. What do you
observe?

HL = 0000.

What is the value of the Stack Pointer (SP)?

After the subroutine has been executed, the return address,
1803, (see Step 5) has been "popped" off the stack and the Stack
Pointer returned to 1F9F.

Push PC, GO then RESET. What do you observe?

The familiar rEAdy display indicates the MT-80Z has gone through
the initialization process described in Chapter 1.

View the SP. What is the value. How does your observation

differ from Step 57

The Stack Pointer has been set to 1F9F by the RESET function.
The program has been interrupted but you will not be able to
resume execution from the point of interruption.

3-36

o7

EXPERIMENT 8 - INTER KEY

The purpose of this experiment is to help you learn how to use the INTER
key. The INTER key is directly wired to the Z80 maskable interrupt INT pin.
You may recall from the previous experiment that the BREAK key will function
any time it is pressed. Before INTER can be used, the interrupt flip-flop
(IFF) must be set. This operation unmasks the interrupt input. The IFF is
set using the Z80 instruction, EI or by use of the keyboard REG function.

When unmasked, pushing INTER is the equivalent to executing the 780
instruction, RST 38. The instruction code is FF. The RST 38 calls a
subroutine located at Monitor address 0038. This subroutine will cause the
780 to begin executing instructions starting at an address stored at 1FEE and
1FEF. At power-up, the Monitor stores the address 0066 at 1FEE and 1FEF. This
causes the unmasked INTER to function the same as the BREAK key. If you
change the contents of 1FEE and 1FEF, the INTER will execute a function you
specify.

You will need a short length of #22 or #24 solid hook-up wire for this
.experiment.

STEP 1: Apply a jumper between PORT SOCKET connections OUT FF and Pl CL.
The jumper connects the Port 1 clock input (Port 1 LED
interface) to the output address control for port FF. The
jumper "maps" the Port 1 Logic Indicators to port address FF.
No additional wiring is needed.

3-37

7

STEP 2:

ADDRESS

1800
oot
1802
1803
1804
1805
1806
1807
1808
1809
180A

STEP 3:

Load the program listed beloQ:

INSTRUCTION
CODE MNEMONIC COMMENTS
00 NOP Reserved for later use
87 SUB A A=0
D3 OUT (FF),A Qutput A to port FF
FF
0B 06 LD C,FF C = FF
FF)
10 DJNZ dis TIME DELAY LOQP |
FE
3C INC A A=A+1
13 JR dis Jump relative to
F7 address 1802

What is the function of this program?

The first instruction, NOP, is a no-operation instruction used
to reserve the memory location 1800 for later use. The next two
instructions set A to zero and sends a copy of A to the Logic
Indicators at port FF. The dinstructions LD C, FF and DJNZ dis
cause a small time delay by decrementing and looping until
C = 0. The delay slows the program enabling you to see the LEDs
changing. The next two instructions increment the accumulator
and create a loop by jumping back to address 1802. The endless
loop will continue until interrupted by RESET, BREAK or a pro-
perly unmasked INTER.

3-38

STEP 4:

STEP 5:

STEP 6:

STEP 7:

STEP 8:

STEP 9:

Run the program. What do you observe at the Port 1 Logic
Indicators?

The port 1 LEDs display a very rapid binary count.

Stop the count by pushing BREAK. What do you see?

We observed the address 1806 with instruction Code 10 and the
port LEDs showing 1101 0100.

" Resume execution by‘pushing GO.

Push INTER. What happens?

Nothing. INTER will not work until the INT input is unmasked.

Push BREAK. Push REG, then I-IF. What do you observe?

The display 0000 1F, indicates the interrupt vector register is
zero (left two digits) and the interrupt flip-flop (IFF) is
reset (right two digits).

Unmask the INTER function by pushing DATA, then Gl. The display
should look like this:

amror 1 C
/I A ()

3-39

STEP 10:

STEP 11:

STEP 12:

STEP 13:

STEP 14:

STEP 15:

STEP 16:

Push PC, then GO. The counting on the port 1 LEDs should
resume.

Push INTER. What do you observe?

When simply unmasked, INTER functions the same as the BREAK key.
Push GO to resume.

Push INTER. What happens?

When the interrupt from the INTER key was acknowledged by the
280, further interrupts were disabled. You can verify this by

checking the IFF.

Push BREAK, REG, then I+IF. What is the state of the IFF?

The IFF has been reset.

The IFF can be set by the instruction EI (instruction Code FB).
Change address 1800 from 00 to FB.

Run the program, then push INTER. What did you observe? Why?

The INTER key operated without manually setting the IFF. This
proves the function of the EI instruction.

3-40

In the remaining steps, you will change the contents of addresses 1FEE and
1FEF. After this change, INTER will cause the execution of a program you

specify.

STEP 17:

ADDRESS

1900
1901
1902
1903
1904

STEP 18:

STEP 19:

Enter the following program. Note that the starting address is
1900. The program you entered in Step 1 and changed in Step 15

will remain in memory addresses 1800-180A.

INSTRUCTION
CODE MNEMONIC COMMENTS
3E LD A,55 A =55
55
D3 OUT (FF),A Output A to port FF
FF
76 HALT Halt execution of instructions

What is the function of this program?

This program will load A with the number 55, output to the port
FF LEDs, then halt.

What are the «contents of addresses 1FEE and 1FEF?
1FEE = , 1FEF = . Why do these addresses

contain the values observed?

Using the ADDR function, we found 1FEE = 66 and 1FEF = Q0.
These values were stored by the Monitor at power-up.

3-41

7Y

STEP 20:

STEP 21:

STEP 22:

Change 1FEE from 66 to 00. Change 1FEF from 00 to 19.

Push RESET, PC, then GO. You should see the count on the Port 1
LEDs.

Push INTER. What do you observe at the LEDs and HALT indicator?
Why?

The port LEDs display 0101 0101 and the HALT LED is 1it. This
is proof that the program at address 1900 was executed when

- INTER was pressed.

STEP 23:

STEP 24:

STEP 25:

If you wanted to use INTER to interrupt a program and begin
executing instructions at address 18B9, what values must be
stored at 1FEE and 1lFEF? ‘

1FEE = B9, 1FEF = 18.

How is the INTER key unmasked?

Change the IFF from 00 to Ol.

Why does the BREAK key work without unmasking?

BREAK uses the NMI, Non-maskable Interrupt input.

3-42

EXPERIMENT 9 - USER KEY

The purpose of this experiment is to help you learn how to use the USER
key. The USER key is the only connection to pin PA6 of the 8255 PPI chip. It
is not a function key recognized by the Monitor. The use of this key requires
a polling routine which inputs Port A of the 8255 (port 00) and tests bit 6.

A conditional instruction can follow the polling routine to branch to a

different section of & program depending on the state of bit 6.
Here is an example of a simple polling routine:

IN A, (00) Input PAO-PA7 of 8255
" BIT 6,A Test bit 6 of the accumulator

At the end of this routine, the zero flag will be set only if the key was
pressed. ’

3-43

~Iln

STEP 1:

ADDRESS

1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
180A
1808
180C

STEP 2:

Load the following program:

INSTRUCTION
CODE MNEMONIC COMMENTS
21 LD HL,1000 HL = 1000
00
10
DB IN A, (00) A = PAO-PA7 of 8255
00 USER key is PA6
cB BIT 6,A Test bit 6 of accumulator
77 ‘
20 JR NZ,dis If USER not pressed, jump
FA back to 1803
CcD CALL TONEZK If USER pressed, call
E2 TONE2K
05

76 HALT Stop executing instructions

What is the function of this program?

The first instruction sets HL to 1000 for the TONEZK duration.
The next two instructions poll the condition of the USER key.
If the key is up, bit 6 = 1 and the Zero flag = 0. If the key
is pressed, bit 6 = 0 and the Zero flag = 1. The relative jump
instruction, JR NZ, dis, tests the Zero flag. If the key is up,
the Zero flag = 0 and the JR NZ, dis causes a jump back to
address 1803. This forms a continuous Tloop until USER is
pressed. When the key is pressed, the Zero flag = 1. The

3-44

STEP_3:

STEP 4:

relative jump is skipped and TONE2K is called. A tone from the
speaker will last until HL 1is counted to zero by the TONEZK
subroutine. When the subroutine returns, the HALT instruction
stops the Z80.

Press PC, then GO. What do you see and hear?

The MT-80Z seems to be "dead" because the Z80 is polling the

USER kéy. It will remain in the polling loop until USER is
pressed. -

" Press USER. What do you observe?

We observed a 2-second tone from the speaker, then the HALT LED

lit. Ppressing the USER key ends the polling loop allowing
execution of the subroutine TONEZk and the HALT instruction.

3-45

EXPERIMENT 10 - SPEAKER AND TONE LED

The purpose of this experiment is to demonstrate the direct control of the
speaker and the TONE LED. In the experiments, most of the speaker operation
is controlled by the Monitor. Occasionally, you borrow the Monitor subroutine,
TONE2K as an indicator to verify the operation of a program or function. In
this experiment, you will control the speaker and LED directly without the use
of Monitor subroutines.

The speaker and TONE LED are both interfaced to the 8255 PC7 pin. The 8255
~ PCO-PC7 group is mapped as output port 02. See the MT-80Z Technical Reference
Manual for the schematic diagram of this circuit.

CAUTILION
Bit PC6 of port 02 is one of the inputs to the
BREAK key interface. Outputting a zero to PC6 is
the equivalent to pushing the BREAK key. When
using the speaker and TONE LED, it is advised to

always maintain bit 6 at a logic 1.

In the next 5 steps, you will learn how to control the green TONE LED.

INSTRUCTION
ADDRESS CODE MNEMONIC COMMENTS
1800 3E LD A,7F A=7F; bit7=20
1802 7F bits 0-6 = 1
1803 D3 ouT (02),A 8255 PC7 = 0, PCO
1804 02 PC6 = 1, TONE LED is Tit
1805 76 HALT

3-46

STEP 2: What is the function of this’program?

The first instruction sets the appropriate bit pattern in the
accumulator to light the TONE LED. Bit 7 = 0 and the remaining
bits, 0-6, are set to 1. It is especially important to have bit
6 =1 to avoid a BREAK. The second instruction will output the
bit pattern, 7F, to output port 02. The TONE LED will light.
The HALT instruction will stop program execution.

STEP 3: Push PC, then GO to run the program. What is the state of the
- TONE and HALT LEDs? Why?

The 1lighted TONE LED verifies the LD A,7F and OUT (02),A
instructions. The HALT LED indicates the HALT state caused by
the last instruction of the program.

STEP 4: what is an appropriate bit pattern that would turn off the TONE
LED?

We chose FF. Bit 6 must remain set to avoid BREAK.

STEP 5: Change address 1801 from 7F to FF and run the program. What do
you observe?

The TONE LED is off and the HALT LED is on.

The speaker is connected to the same interface as the TONE LED. When the LED
is on, the specaker voice coil is energized. A program that controls the LED
can civuduce sound from the speaker by the alternation of 1 and O at PC7. This
is a process called toggling. The following program will toggle at a rapid
rate producing a tone from the speaker.

3-47

STEP 6:

ADDRESS

1800
1801
1802
1803
1804
1805
1806
1807

1808
1809
180A

1808
180C

INSTRUCTION
CODE

97
3E
FF
D3
02
10
FE
1F

D3
02
17

18
F4

Load the following program:

MNEMONIC

SUB A
LD A,FF

ouT (02),A
DJINZ dis
RRA

ouT (02),A
RLA

JR dis

3-48

COMMENTS

A =0,CY flag = 0
A = FF

8255 PCO-PC7 =1
DELAY

Toggle by rotating CY flag
to bit 7

8255 PCO-6 = 1,

PC7 =0

Toggle by rotating left,
PC7 =1

Jump relative to

address 1803

+ N/

STEP 7:

STEP 8:

What is the function of the program in Step 6?

The primary purpose of the first instruction is to set the carry
flag to zero. The carry flag is used by the rotate instructions
in the program. The instructions LD A,FF and OUT (02),A set
PCO-PC7 = 1. The voice coil of the speaker is not energized.
ONJZ' dis causes a short delay by looping to address 1805 until
register B = 0. The initial value of B is not important. The
RRA instruction rotates the carry flag contents right, into bit
7- of the accumulator. This changes bit 7 from 1 to 0. The next
instruction, OUT (02),A sets PC7 to 0. The voice coil is
energized. The RLA instruction is opposite to the RRA toggling
bit 7 to 1 and the carry flag to 0. JR dis jumps relative back
to the OUT (02),A instruction at address 1803. The program loop
continually toggles bit 7 of the accumulator and outputs it to
PC7 producing the tone.

Push PC, GO, then BREAK. What do you hear? What is the state
of the TONE LED? Why?

We heard a raspy tone from the speaker. The TONE LED appeérs to
be out. The program produces a square wave with a very short
duty cycle ("on-time") at PC7. The short "on-time" results in a
very low level of illumination of the LED.

3-49

EXPERIMENT 11 - Logic Indicators and the Port Socket

The purpose of this experiment is to help you learn how to use the Logic
Indicators to perform the following tasks:

1. Simple logic monitoring

2. Latching and displaying bus data sent from the Z80 using the
series of OUT instructions.

" The use of the Port 1 Logic Indicators as a data bus monitor will be covered
in Experiment 13. Before proceeding with this experiment you are advised to
review the Chapter 1 sections describing both the Logic Indicators and the
PORT SOCKET.

For this experiment, the following jumpers are required.

8 each 6" (15.2 cm)
3 each 3" (7.6 cm)

Use #22 or #24 solid hook-up wire. Strip each end of the jumpers
approximately 3/8" (1 cm).

In the next 5 steps, you will learn how to use the Port 2 LEDs as simple
logic monitors.

STEP 1: Connect the end of a 6" jumper to PORT SOCKET connector L7. You
can use the other end of the jumper as a logic probe. Connect
the jumper to +5 on the PORT SOCKET. What do you observe on the
Port 2 LED 77 Why?

3-50

103

Al

STEP 2:

STEP 3:

STEP 4:

STEP 5:

+5V is a logic 1 state indicated by the 1ight at LED 7.

Connect the jumper to GND on the PORT SOCKET. What do you see?

LED 7 is out indicating a logic O state.
Note: When L7 is not connected, the LED is also out.

A1l the LEDs of Port 2 can be used as a logic probe. Connect
one end of the jumper to +5. Move the other end from L7 to L6
then L5 and so on until you have tested the response of all

~eight Port 2 LEDs. What do you observe?

Any of the Port 2 LEDs light when connected to logic 1 state.

Let's monitor a logic level on the Z80 bus. Connect the jumper
from LO to SY RST on the BUS SOCKET. What is indicated on the
LED?

The normal condition of the bus connection is logic 1. What
will cause it to go to logic 07?

A RESET input.

Push the RESET key a few times. What do you observe?

THE LED goes out each time the RESET key is pushed. A logic O

indicates a reset input.

3-51

In the reﬁaining steps of this experiment, you will learn how to use the Port
1 and Port 2 Logic Indicators as output ports. The term, output port, refers
to the LEDs and chips that are in contact with the Z80 data bus whenever an
output instruction is executed.

The PORT SOCKET provides port addresses FD, FE and FF. These addresses can be
assigned to Port 1 and Port 2. Port 2 can be split into Port 2X (4-bit) and
Port 2Y (4-bit). Port 1 is permanently interfaced to the data bus. Port 2
use requires jumpering to the data bus on the BUS SOCKET.

In the next 7 steps, you will learn how to use the port 1 LEDs as output
port FD, FE or FF. NOTE: Connect a jumper between PICL and OUTFF.

STEP 7: Load the following program:

INSTRUCTION
ADDRESS CODE MNEMONIC COMMENTS
1800 3E LD A, 55 A = 55
1801 55 ‘
1802 D3 QuUT (FF),A Output register A to
1803 FF port FF
1804 76 HALT Stop executing instructions

STEP 8: What is the function of the progfam in Step 77

The first instruction sets the accumulator to the value 55. The
second instruction, OUT (FF),A sends a copy of the accumulator
to port FF. The HALT instruction stops the 280 and lights the
HALT LED.

3-52

. b

STEP 9:

STEP 10:

Push PC, then GO. What do ydu observe?

The LEDs at Port 1 indicate a binary 01010101 or hexadecimal 55.
This proves the operation of the program and the mapping of the
Port 1 LEDs to port address FF. How would you change the
program to display the following bit pattern at Port 1:
101010107

Change the code at address 1801 to AA. Try it. Push RESET to
exit the HALT condition. Push PC, then NEXT to display address
1801. Enter AA to change address 1801. Push PC, then GO to
execute the program. Did it work?

We were able to display any bit pattern from 00 to FF.

Port 1 can also be mapped fo ports FD and FE Move the jumper
from OUT FF to OUT FE. The Port 1 LEDs are now mapped to port
FE. This change in hardware (moving the jumper) requires a
modification of the software. Which instruction must be
changed?

Change OUT (FF),A to OUT (FE),A. The code at address 1803 must
be changed to FE.

3-53

STEP 11:

STEP 12:

Change 1803 from FF to FE and run the program. What are the
results? Why?

Port 1 displays the accumulator contents because the 780 output
instruction and the port hardware match. What changes in
jumpering is required to use the instruction OUT (FD),A?

Move the jumper from OUT FE to OUT FD.

Change the jumper and instruction. Run the program. What do
you observe?

As long as the jumper (hardware) matches the OUT (PORT),A
instruction (software) the port LEDs will display accumulator
contents. The Port 1 LEDs can be mapped to ports FD, FE or FF.

In the next 5 steps, you will learn how to use the Port 2 Logic Indicators as
output ports FD, FE or FF.

STEP 13:

Remove power and use jumpers to make the following connections:

a. a short jumper from OUT FF to P2X CL
b. a short jumper from P2X CL to P2Y CL.

NOTE: The PORT SOCKET provides five electrically connected
terminals for each labeled function. They are arranged in a
vertical row above the label. The second wire connected to
P2X CL can be inserted above or below the existing wire.

3-54

107

STEP 14:

STEP 15:

STEP 16:

STEP 17:

c. Eight 1long Jjumpers from LO-L7 of the PORT SOCKET to
DO-D7 of the BUS SOCKET. Be sure that the numbers
correspond: LO to DO, L1 to D1, etc.

Check your wiring, then apply power. The “"rEAdy" display should
appear on the 7-segment display. If the display appears blank,
remove power and recheck the jumpers. The most likely problem
is an incorrect jumper to the data bus.

Load the program listed in Step 7.

Run the program. What do you observe on the Port 2 LEDs?

The LEDs at Port 2 indicate a binary 01010101 or hexadecimal 55.
This proves the operation of the program and the mapping of the
Port 2 LEDs to port FF.

The Port 2 Logic Indicators can also be mapped to ports FD and
FE. Move the jumper from OUT FF to OUT FE and repeat Steps 10,
11 and 12.

How is Port 2 simi]af to Port 17

Both Port 1 and Port 2 Logic Indicators can be mapped to port
addresses FD, FE and FF. How are Port 1 and Port 2 different?

Port 1 is permanently interfaced to the data bus and requires
only a single jumper for port address. Port 2 requires jumpers
to the data bus and 2 jumpers for port address.

3-55

In the remaining steps, you will learn how to use the Port 2 Logic
Indicators as two independent 4-bit output ports.

STEP 18:

STEP 19:

STEP 20:

Remove the 2 jumpers used for port address control. The 8
jumpers from LO-L7 to DO-D7 should remain in place.

Use two short jumpers and make the following PORT SOCKET
connections:

a. P2X CL to OUT FE
b. P2Y CL to OUT FD

Port 2 is now split into 4-bit output ports. What is the port
address of Port 2X and Port 2Y?
Port 2X 1is mapped as port FE and Port 2Y is mapped as port FD.

Port 2X uses LEDs 0-3 and Port 2Y uses LEDs 4-7.

How can the program listed in Step 7 be changed to cause the
following bit pattern to be displayed?

Port 2Y Port 2X
1100 0011

3-56
Y

ADDRESS

1800
1801
1802
1803
1804
1805
1806
1807
1809

STEP 21:

STEP 22:

INSTRUCTION ‘
CODE MNEMONIC COMMENTS

3E LD A,03 A =203

03

D3 ouT (FE),A Output A to port FE

FE

3t LD A,CO A=C0

Co

D3 OUT (FD),A Output A to port FD

FD

76 HALT Stop executing instructions

What is the function of the program listed in Step 20?

The first instruction loads A with 03. The OUT (FE),A sends 03
to port FE. However, port FE 1is connected only to data bus
DO-D3. Port FE Tlatches and displayes the 3. The next
instruction loads A with CO. The OUT (FD),A sends a copy of the
entire accumulator contents, CO, to port FD. Port FD 1is
interfaced to D4-D7. and displays only the C (1100).

Load and STEP the program listed in Step 20. What is the bit
pattern displayed on the Port 2 LEDs?

1100 0011

3-57

STEP 23:

How would you map Port 2X to port FF?

Move the jumper from OUT FE to OUT FF.

3-58

|1

- EXPERIMENT 12 - LOGIC SWITCHES AND THE PORT SOCKET

The purpose of this experiment is to help you learn how to use the Logic
Switches to perform the following tasks:

1. Use Port 2 to apply a logic 1 or O to PORT SOCKET terminals
S0-S7. These terminals can provide an external stimulus to the
inputs of interfacing circuits assembled on the breadboarding
socket.

2. Use Pofts 1 and 2 to supply data to the Z80 as input ports.

Before proceeding with this experiment, you are advised to review the
Chapter 1 sections describing both the Logic Indicators and the PORT SOCKET.

For this experiment, you will require the following jumpers:

8 each 6" (15.2 cm)
3 each 3" (7.6 cm)

Use #22 or #24 solid hook-up wire. Strip each end of the jumpers approxi-
‘mately 3/8" (1 cm).

In the next 5 steps, you will learn how to use the Port 2 Logic Switches
to apply a logic 1 or 0 to a digital circuit.

STEP 1: Connect a 6" jumper from PORT SOCKET SO to LO. Now, use 7
jumpers to connect the remaining terminals S1-S7 to L1-L7. The
numbers should match.

3-59

 H

STEP 2: -

STEP 3:

STEP 4:

STEP 5:

Change some of the Port 2 switches. What do you observe on the
Port 2 LEDs? Why?

We observed a bit pattern on the LEDs that match the switch
settings. The Port 2 LEDs are used as logic monitors indicating
a light for a logic 1 and no light for a logic O.

How is the switch rocker positioned for a logic 17

The rocker is pushed toward the word OPEN printed on the switch

to select a logic 1. Set the switches to observe a binary
1111 1111 on the Port 2 LEDs.

There are two sets of numbers displayed near the switches. The

switches themselves are numbered 1-8. The board is marked 0-7.

Which set of numbers correspond to the PORT SOCKET numbering for
S0-S7?

0-7.

How is the rocker positioned for a logic 0?

The rocker 1is pushed toward the numbers to select a logic O.
Set the switches to observe a binary 0000 0000.

In the next 5 steps, you will learn how Port 2 can be split into Port 2X and
Port 2Y. Also, you will learn how P2X EN and P2Y EN provide tristate control

for PORT SOCKET terminals S0-S7 (switches).

3-60

STEP 6: -

STEP 7:

STEP 8:

STEP 9:

Using a short jumper, connect P2X EN to P2Y EN.

Set the Port 2 switches to display 1111 1111 on the logic
monitor LEDs.

NOTE: The PORT SOCKET provides five electrically connected
terminals for each labeled function. They are arranged in a
vertical row above the label. In the next step you will be
required to make a second connection to P2Y EN. The jumper wire
can be inserted above or below the existing wire.

| Using a shert jumper, connect P2Y EN to IN FD. What do you see?

Tﬁe logic monitor LEDs display 0000 0000. 1Is the logic level at
S0-S7 a logic 07

No. The connection of P2Y EN and P2X EN to the input port
control IN FD caused a high impedance or "tristate" condition at
outputs S0-S7. The connection of an input port to the data bus
of a microcomputer requires tristate control. The bidirectional
data bus concept allows only one transmitting unit at a time.
Tristate controls act as the traffic signal to input ports and
memory systems to avoid conflicts of information being
transmitted (bus contention).

Remove the jumper connecting P2Y EN to P2X EN. What do you
observe? Why?

3-61

/15

s vl

STEP 10:

Our switches were set to 11111111 and we observed 0000 1111 on
the Port 2 LEDs. Without the jumper, one-half of the Port 2
Logic Switches are enabled ("de-tristated"). Port 2 can be
split into two ports: Port 2X and Port 2Y. Which half of Port
2 is enabled? Which half is in the tristate (high Z) condition?

Port 2X, S0-S3, is enabled. Port 2Y, S4-S7, is tristated.

Move the jumper from P2Y EN to P2X EN. What do you observe?

—

P2X is tristated and P2Y is enabled.

In the next 11 steps, you will Jearn how to use the Port 2 Logic Switches as

an input port.

STEP 11:

The port addresses available for Port 2 are FD, and FE.

Remove power and make the following connéctions on the PORT and
BUS sockets.

a. P2X EN to P2Y EN

b. P2Y EN to IN FD

¢c. Pl CL to OUT FF

d. S0-S7 on the PORT SOCKET to DO-D7

The port 2 switches are now interfaced to the MT-80Z data bus as
input port FD. The Port 1 Logic Indicators are interfaced to
the data bus as output port FF.

- 3-62

STEP 12:

STEP 13:

ADDRESS

1800
1801
1802
1803
1804
1805

STEP 14:

STEP 15:

Apply power. You should see the rEAdy display. If the
7-segment display is blank, you have misplaced the jumpers for
connections a and b of Step 11. Look for shorts between jumpers
connected to the data bus. |

Load the following program:

INSTRUCTION
CODE MNEMONIC COMMENTS
0B IN A, (FD) Input switch data to
FD accumulator
D3 ouT (FF),A Qutput accumulator to
FF port FF
18 JdR dis Jump relative to
FA address 1800

What is the function of the program listed in Step 13?

The first instruction, 1IN A,(FD) 1inputs the switch states,
S0-57, to the accumulator. The second instruction, OUT (FF),A
outputs a copy of the accumulator to the port FF LEDs. The last
instruction forms a continuous loop by jumping back to address
1800.

Push PC, then’ GO. Set the Port 2 Logic switches to 0000 1111.

What do you observe on the Port 1 LEDs? Try some other switch
combinations.

3-63

177

,ﬂlg

STEP 16.

STEP 17:

STEP 18:

STEP 19:

'STEP 20:

We observed 0000 1111 on the LEDs. When any of the switches are
changed to logic 1, the output port LED would light.

Very carefully remove the jumper to disconnect D7 from S7. What
do you observe?

l

The output port Led 7 remains 1lit regardles of switch settings.
Data bus connection D7 is "floating" high during the IN A,(FD)
instruqtion. Whenever an input instruction 1is executed, the
ENTIRE 8-bit data bus is stored in the Z80 accumulator register.

Remove power from the MT-80Z and make the following connections:

a. Replace the jumper from S7 to D7. You should have S0-S7
connected to DO-D7.

b. P2X EN to IN FE

c. P2Y EN to IN FD

d. P1 CL to OUT FF.

Apply power. You should see the rEAdy display. If the
7-segment display is blank, recheck your connections.

Load and run the program listed in Step 13.

Change the settings of Port 2 switches 4,5,6 and 7. Do you see
any changes at the Port 1 LEDs? Try switches 0,1,2 and 3. Does

it cause the same response at Port 1? Can you explain your
observation?

3-64

STEP 21:

STEP 22:

" We observed switches 4-7 Tlighting Port 1 LEDs 4-7. However,

LEDs 0-3 appear 1it regardliess of switches 0-3. The program
inputs port FD which consists of P2Y switches S4-57. The
remaining switches, P2X are mapped as input port FE. This port
is not selected by the program and remains in the tristate
condition at all times. Why do LEDs 0-3 remain 1it?

The "tristate" condition is a high impedance state that allows
the data bus (DO-D3) to “float high" during execution of the
input instruction. The LEDs prove the floating condition by
indicating a constant logic 1 state.

What would happen if the idinstruction, IN A,(FD) was changed to
IN A,(FE)? Change the byte at 1801 from FD to FE and run the
program.

We observed Port 1 LEDs 4-7 1it indicating the data bus
connections D4-D7 were floating. We were able to control LEDs
0-3 by operating Port 2 switches 0-3.

Remove power from the MT-80Z and remove all jumpers.

In the remaining steps of this experiment, you will learn how to use the
Port 1 Logic switches as input port FF. The Port 1 switches are permanently
interfaced to the data bus. Using the PORT SOCKET, Port 1 can be mapped only
to input port FF.

NOTE: Both Pl EN and IN FF are active low.

3-65

A

—

STEP 23:

STEP 24:

STEP 25:

Use two short jumpers and make the following PORT SOCKET
connections:

a. P1CL to OUT FF
b. Pl EN to IN FF

Apply power and load the program listed in Step 13 and change:
IN A,(FD) to IN A,(FF). This requires changing the code at
address 1801 from FD to FF. '

Run the program and change the state of the Port 1 switches.
What do you see?

We observed the Port 1 LEDs being controlled by the Port 1 Logic
Switches.

3-66

EXPERIMENT 13 - SINGLE CYCLE OPERATION

The purpose of this experiment is to help you learn how to use the SINGLE
CYCLE feature and the bus monitor to observe the effects of each Z80 machine
cycle during the execution of a program. The switches used for this experi-
ment ére $3, the CYCLE-RUN switch and PBl, the single cycle step switch. If
thgre are nao connections to Pl CL on the PORT SOCKET, the Port 1 Logic
Indicators are used as a Z80 data bus monitor.

In this experiment, you will execute a short program using SINGLE CYCLE
stepping and observe the data bus changes. These observations provide an
in-depth view of computer operations.

STEP 1: Connect a short jumper between PORT SOCKET connections CYCLE and
WAIT. Use #22 or #24 solid hook-up wire.

STEP 2: Set the CYCLE-RUN switch to RUN.

STEP 3: Load the following program:

INSTRUCTION)
ADDRESS CODE MNEMONIC COMMENTS
1800 21 LD HL,1810 HL = 1810
1801 10
1802 18
1803 34 INC (HL) (1810) = (1810) +1
1804 18 JR-dis Jump relative back
1805 FA to 1800

3-67.

STEP 4:

What is the function of this program?

The first instruction sets register pair HL to 1810. HL will be
used as an address pointer for the next instruction. INC (HL)
will increment the contents of a memory location addressed by
HL. In this case, the contents of address 1810 will be incre-
mented. The last instruction forms a continuous loop by jumping
back to address 1800. When running at full speed, this program
continuously increments the contents of address 1810. Because
the program is a loop, the initial contents of 1810 1is not
important.

The use of SINGLE CYCLE stepping will allow you to monitor the data bus for

every machine cycle of the program. It is particularly interesting to view
the bus during the cycles of the INC (HL) instruction.

STEP 5:

STEP 6:

STEP 7:

With CYCLE-RUN in the RUN position, push PC, then GO. The blank
/-segment display indicates the program loop is in execution.

Switch CYCLE-RUN to CYCLE. What is displayed in the Port 1 bus
monitor?

We observed the hex value 18. Switching to CYCLE stopped the
program at a random location in the loop. Your display is very
Tikely to be different. The present task is to determine where
you are within the program loop.

Push the cycle step button, PBl, once. What do you see?

.. 3-68

STEP 8:

STEP 9:

STEP 10:

- STEP 11:

STEP 12:

Our bus monitor displayed 34. This is the code for the
instruction INC (HL) being fetched by the Z30.

Press PBl six more times, noting the data bus monitor display
(Port 1 LEDs).

Use the following 1listing of single cycle bus displays to
determine your location in the program loop:

— 21 LD HL, 1810
10
18
34 ING (HL)
18 JR dis
" FA

Press PBl until the bus monitor displays the instruction code
for INC (HL): 34.

Press PBl once and note the display.

Press PBl again and note the display.

3-69

STEP 13:

STEP 14:

For steps 11 and 12, we observed 85 and 86. Why are the values
consecutive numbers?

The execution of INC (HL) requires the following three machine
cycles:

‘Bus contents Cycle description
34 Instruction fetch
- Read contents of address 1810

L. Write incremented contents of 1810

How many machine cycles are required to execute LD HL,1810?

Three.
How many machine cycles are required to execute JR dis?

Two.
How many presses of PBl are required to execute the entire
program loop?

Eight.

How can you stop single cycle stepping and view or modify
registers, flags and memory contents?

The BREAK key can be used before switching from CYCLE to RUN.

3-70

STEP 15:

STEP 16:

STEP 17:

STEP 18:

Push PBl until the bus monitor displays the contents of address
1810. This number will be displayed immediately following the
instruction Code, 34.

Push BREAK. There will not be any change in the LED displays.

Switch CYCLE-RUN to RUN. What do you observe on the 7-segment
display?

When you switch to run after BREAK, the Z80 completes the
instruction, INC (HL), then acknowledges the BREAK interrupt.
The 7-segment display should show the next instruction code and
address: 1804 1.8.

Use the ADDR function to examine the contents of address 1810.
What do you find?

}

When we did this step, the contents of 1810 were one more than
the value displayed on the bus monitor in Step 15. The INC (HL)

instruction was completed before the BREAK input gained control
of the MT-80Z. “

3-71

APPENDIX 1

BINARY HEXADEC IMAL | DECIMAL
0000 00 0
0001 01 1
0010 02 2
0011 ' 03 3
0100 04 4
0101 ‘ 05 5
0110 06 6
0111 07 7
1000 08 8
1001 09 9
1010 0A 10
- 1011 0B 11
1100 oc 12
1101 oD 13
1110 13 14
1111 OF 15
10000 | 10 16

APPENDIX 1 Page 1

DATA

]

DELETE

DUMP

GO

APPENDIX 2
MT-80Z Keyboard Quick Reference List

Push ADDR, then number keys to enter addresses.

Break program execution, save registers and>f1ags, -
display break address and data. Interfaced to Z80 NMI.

Clear breakpoint, display shows F.F.F.F. F.F.

Set breakpoint at displayed address. MT-80Z allows
one breakpoint. Setting new breakpoint automatically
clears previous breakpoint.

Transfers a copy of a block of memory to another area of
memory. Format: Push COPY, enter starting address of
block, push NEXT, enter ending address of block, push
NEXT, enter destination starting address, push GO.

Push DATA, then number keys to enter memory,
register or flag contents.

Delete the displayed memory contents and move subsequent
memory contents to the next low address.

Store MT-80Z memory contents on audio tape recorder.
Format: Push DUMP, enter hexadecimal file name, push
NEXT, enter starting address of data to be recorded,
push NEXT, enter ending address of data to be recorded,
push GO.

Run program starting at displayed address. Format:
Press PC (or set address using ADDR), then GO.

Page 1-23

Page 1-21

Page 1-24

Page 1-24

Page 1-24

Page 1-23

" Page 1-24

Page 1-25

Page 1-25

APPENDIX 2 Page 1

"INSERT

[

INTER

.

LOAD

O

NEXT

]

PC

]

"PREV

]

RELA

O

RESET

[

STEP

]

Insert one byte into memory at the address displayed +1.

Moves subsequent memory contents to the next highest
address. ,

Maskable interrupt. Uses vector that Monitor loads
at 1FEE and 1FEF. INTER is equivalent to RST 38

instruction. Connected to Z80 INT.

Load data recorded by MT-80Z DUMP command from audio
tape recorder to MT-80Z memory. Format: Push LOAD,
enter hexadecimal file name, push GO.

Increment displayed address, move to next register
pair or flag group display.

Display user's program counter. User's PC can be
changed prior toc pressing GO or STEP.

Decrement displayed address, move to previous
register pair or flag group dispiay.

Calculate and store displacement for JR and DJINZ
instructions. Format: Push RELA, enter address of
JR or DJINZ instruction, push NEXT, enter destination
of jump, push GO.

System reset, interfaced to ‘780 RST.

Single instruction step key. Format: Press PC
(or set address using ADDR), then STEP each
instruction. s

Page

Page

Page

Page

Page

Page

Page

Page !

Page

1-24

1-22

1-25

1-23

1-25

1-23

1-23

1-26

APPENDIX 2 Paga 2

Connecter to PA6 of 8255, mapped as input Port 00. Page 1-26

PR D A TA/REGISTE R sy
AF BC DE HL
L L L] L Dual purpose keys, Page 1-20
’ / , , used to input data
AF BC DE HL and addresses. Push
] 1 1 [REG to select register
pair and flag group
displays.
X 3 4 SP 1-1F
I e N e A e
l FLAGS]
SZ-H PNC sz-H' -PNC’ REG
O O O O O™

APPENDIX 2 Page 3

oBJ SOURCE
CODE STATEMENT
8E ADC A (HL)
DDBEOS ADC A,(1X+d)
FDBEOS ADC A_(1Y+d)
8F - ADC A A

88 ADC A.B
89 ADC A.C
8A ADCAD

88 ADC AE
8C ADC A R
80 ADC AL
CE20 ADC AN
ED4A ADC HL.BC
EDSA ADC HL.DE
ED6A ADC HL HL
ED7A ADC HL.SP
86 ADD A.(HL)
DDB8605 ADD A.(1X+d)
FD8605 ADD A, {1Y+d)
87 ADD A.A

80 ADD A.B

81 ADD A.C
82 ADD A.D
83 ADD A E

84 ADD A.H
85 ADD AL
£620 ADD AN

09 ADD HL BC
19 ADD HL DE
29 - ADD HL HL
39 ADD HL SP
D009 ADD 1X,8C
DD19 ADD IX.DE
DD29 ADD I1X.1X
DD39 "ADD IX,SP
FD09 ADD 1Y BC
£D19 ADD 1Y.DE
FD29 ADD IV 1Y
FD39 ADD IV SP
A6 AND (HL)
DDA605S AND (1X+d)
FDAEOS AND (tY +d)
A7 AND A

AD AND B8

Al AND C

A2 AND D

A3 AND E

A4 ANDH

AS AND L
€620 ANDN °
CB46 BIT 0,(HL)
DDCB0546 BIT 0.(1X+d)

FDCB0546

BIT 0.{iY+d)

Z280—-CPU

APPENDIX 3

INSTRUCTIONS

SORTED BY MNEMONIC

cBa?
cB40
cB41
cB4a2
cB43
CBas

CB4S
CBAE
DDCBOS4E
FDCBOSAE
CB4F
BC48
cB4g
CB4A
cB4B
cB4ac
CB4D
cB56
DDCBO556
FDCBO0556
cBs?
CB50
€851
c852
cBs3
cBs54
cBS55
CBSE
DDCBOSSE
FDCBOSSE
CBS5F
cBess
CB59
CBSA
c8s8
cBSC
cB5D
CB66
DDCBO566
FDCBOS566
cB6?
cB60
cB861

‘CB62

cBé63
cBs64

- CB6S

CB6E

8ITO.A

81T 0.8
BITO0C
BITO.D
BITO.E
BITO.H
siToL
BIT 1,(HL)
BIT 1,(iX+d)
BIT 1.(1Y+d}
BIT 1,A
BIT1.B
BIT1.C
BIT1.D
BIT1.E
BIT1H

BIT 1L

BIT 2,{HL)
8IT 2,{1X+d)
BIT 2,iY+d)
BIT 2.A
BIT2.B
BIT2.C

BIT 2,D
BIT2.E
BIT2.H
BIT2.L

BIT 3.(HL)
BIT 3.{iX+d)
BIT 3,{lY+d)
BIT3 A
BIT 38
BIT3.C

8IT 3D

BIT 3.E
BIT3H
BIT3.L

SIT 4,(HL)
BIT 4. (1X+d)
BIT 4.{1Y+d)
BIT 4. A
BiIT4B
BITA4.C
8iT4,D
BIT4.E
BIT4.H
BITA4.L
BIT S, (HL)

APPENDIX 3 Page 1

DDCBOS6E 81T 5 {iX+d)
FDCBOS6E BIT 5.(1Y+d}
CB6F BITS5 A ’
cB68 BITS58B -
CB&9 817T5C
CB6A BITSD
cBes8 BITS5.E
CB86C BIT5 H
caed BITS5,L
cB76 BIT 6,(HL}
DDCBOS76 BIT 6,{1X+d}
FDCBO576 BIT 6,(1Y+d)
cB77 BIT6,A
CcB70 BiT 68
cB71 -’ ‘BIT 6,C
cB72 BIT 6D
CB73 8iT6.E
cB74 BIT6,H
CB75 8ITS6.L
CB7E BIT 7.(HL)
DDCBOS7E BIT 7,{I1X+d)
FDCBOS7E BIT 7,(1Y+d)
CB7F BIT7 A
cB78 BiT78B
cB79 BIT?7.C
CB7A BIT7D
cB7’8 BIT 7.E
cB7C 8IT72.H
CcB7D . BIT7.L
DC8405 CALL C NN
FC8405 CALL M NN
D48405 CALL NC NN
CD8405 CALL NN
C48405 CALL NZ NN
F48405 CALL PNN
ECB40S5 CALL PE NN
E48405 CALL PO NN
CCB405 CALL Z,NN
3F CCF
BE CP (HL)
DDBEQOS CP (X +d)
FDBEQS CP {iY+d)
BF CP A
B8 cPB
B89 crc
BA cPD
88 CPE
BC CPH
.

CB39
CE9A
€898
€BacC
c890
CBAS
DDCBOSAG
FDCBO5A6
CBA7
CBAO
cBA1l
CBA2
CBA3
CBA4
CBAS
CBAE
DDCBOSAE
FDCBOSAE
CBAF
CBASB
CBAY9
CBAA
CBAB
CBAC
CBAD
ceseé
DDCBO5B6
FDCBO58B6
ces?
cB8o
cBB1
cB82
£883
cBB4
€885
CBBE
DDCBOSBE
FOCBOSBE
CBBF
cBss8
cBB9
CBBA
csBB
€sBC

RES 3.C

RES 3D
RES 3.E
RES 3. H
RES 3.L
RES 4. ({HL)
RES 4, (1 X+d)
RES 4,{1Y+d)
RES 4.A
RES 48
RES 4.C
RES 4D
RES4.E
RES 4 H
RES 4L
RES 5,(HL)
RES 5.(1X+d)
RES 5 (1Y +d)
RESS A
RESS.B

RES 5.C
RESS5.D
RESS.E
RES5.H
RESS5,L
RES 6,(HL)
RES 6. (1 X+d}
PZS 6.{1Y+d)
RES 6.A
RES6RB
RES 6.C
RES 6.D
RES 6.E
RES 6. H
RES6.L
RES 7. (HL)
RES 7. {1X+d)
RES 7.{1Y +d)
RES 7.A
RES7.8B
RES 7.C
RES?7.D
RES 7 E
RES 7.H
RES 7.L
RET

RET C
RETM

CB16
DDCBO516
FDCBOS16
cB17
CB10
cB11
cB12
cB13
cB14
cB1s

17

cBO6
DDCBO506
FDCBO506
€807
CBOO
CBO?
cBO2
c803
CBOA4
CBOS

07

ED6F
CB1E
DDCBOS1E
FDCBO51E
CBIF
cB18
CB19
CB1A
cB18
cBI1C
CB1D

1F

CBOE
DDCBOS0E
FDCBOSOE
CBOF
cBo8
CBO9

RET NC
RET NZ
RETP
RET PE
RET PO
RET Z
RETI
RETN
RL (HL)
RL {{X+d)
RL {1Y+d)
RL A
RL B
RLC
AL D
RL E
RLH
RL L
RLA

RLC {HL)
RLC {IX+d)
RLC {1Y+d)
RLC A
RLC B
RLCC
RLC D
RLCE
ntCH
RLC L
RLCA
RLD

RR (HL)
RR {IX+d)
RR {1Y+d)
RR A
RR B
RRC
RR D
RR E
RR H
RR L
RRA
RRC {HL)
RRAC (1X+d)
RRC (1Y+d)
RRC A
RRCB
RRC C

cacCe
DOCBO5Cé
FDCBO5CH
csC7
cBCO
cBCt
cBC2
cBC3
cBC4
cBCS
CBCE
DDCBOSCE
FDCBOSCE
CBCF
cscCs
c8C9
CBCA
CBCB

RRC D
RRC E
RRC H
RRC L
RACA

RRD

RST 0

RST 10H
RST 18H
RST 20H
RST 28H
RST 30H
RST 38H
RST 8

SBC A.{HL)
SBC A.(1X+d)
SBC A{1Y+d)
SBC A A
SBC A B
SBCA.C
SBC AD
SBC A€
SBC A H
SBC AL
SBC AN
SBC HL.BC
SBC HL.DE
SBC HL.HL
SBC HL.SP
SCF

SET 0.(HL)
SET 0,(1X+d)
SET 0.{IY+d)
SET0.A

SET 08

SET 0.C
SET0.D

SET 0.E
SETO.H
SETO.L

SET 1.(HL)
SET 1.(1X+d)
SET 1.(1Y+d)
SET1A .
SET 1.8
SETI1C -
SET1D -
SET 1.E

APPENDIX 3 Page 2

DDAEQS
FDAEDS
aFf

55

1620
EDSBB405
118405

LD C.liX+d}
LD C.(1Y +d)
tDCA
tpCcsB
wDCC
LtpCcoh

LD CE
tDCH
LOCL
LOCN

LD D,(HL}
LD D,{1X+d)
LD D.(1Y+d)
LD DA
LDDB

LD D.C

LD D.D

LD D¢
LDDH
LDO.L

LD ON

LD DE.INN)
LD G NN
LD E.(HL) .
LD E (1X+d)
LD E.(1Y+d)
LOEA
LDEB
LDEC
LDED
LDEE
LDEH
LDEL
LDEN

LD H.(HL)
LD H (1X+d)
LD H (1Y+d)
LD HA
LDHB
LODHC
LDHD

LD HE
LDHH
LDHL

LD HN

LD HL (NN)

LD HL NN
LD LA

DD2ABA40S
DD218405
FD2AB405
FD218405

60D
2E20
ED78B8405

LD IX.(NN)
LD X NN
LD 1Y (NN)
LD 1Y NN
LD L.tHL)
LD L {1X+d}
LD L. (1Y +d)
LD LA
LD LB
LoLC
LD LD
LDLE
LDLH
LDL.L
LDULN-
LD SP.(NN)
LD SP HL
LD SP.IX
LD SPIY
LD SP.NN
LDD
LDDR
LDt
LDIR
NEG
NOP
OR (HL)
OR (1X+d)}
OR (1Y +d)
OR A
ORB
ORC
"ORD
ORE
ORH
ORL
ORN
OTODR
OTIR
QUT (C)A
QuT (C) B
ouT {(C),C
QUT (C),D
OUT (C).E
DUT (C) H
QuUT (C)L,
OUT (N)LA
QUTD

APPENDIX 3 Page 3

FDCBOS86
cB8?
C880
ces1
cB82
ces3
cesa
cB8s
ca8st
DDCBOS8E
FDCE. 3£
cB8F
cB8s8
c889
cB8A
cess
cBSC
€B8D
CB96

" DDCBOS96

FDCB0596
c897
cB30
891
cB92
ceal
cB9g
€835
CBYE
DDCBOS9E
FDCBOS9E
cBIF
c898

ouTi
POP AF

POP BC

POP DE

POP HL

POP 1X
POPIY
PUSH AF
PUSH BC
PUSH DE
PUSH HL
PUSH 1X
PUSH 1Y
RES 0,(HL)
RES 0.(1X+d)
RES 0.(1Y +d}
RES 0,A
RES 0,8
RES 0.C
RES 0D
RES 0.F
RES OH
RESO.L
RES 1.(HL)
RES 1.(IX+d)
RES.1,(1Y+d)
RES 1.A
RES 1.8
RES 1.C
RES 1.0
RES 1.E..
RES 1.H
RES 1.L

RES 2.(HL)
RES 2.(1X+d)
RES 2.{1Y+d)
RES 2.A
RES 2.B
RES 2.C

RES 2.D
RES 2,E

.RES 2. H

RES 2.L
RES 3.{HL)
RES 3.(1X+d)
RES 3.(1Y +d)
RES3.A
RES 3B

P
8D - cPL I INC A
FE20 CPN ca iNC B
EDA9 cPOD 03 INC BC
£DHBY CPOR oC INCC
EDAY cP .14 INC D
EDB1 CPIR 13 INC DE
2F CcPL 1c INC E

§ 27 DAA 24 INC H
15 DEC (ML) 23 WC HL
©D3505 DEC (1X+d} DD23 INC 1X
FD3505 DEC {1 Y+d) FD23 INC Y
D DEC A 2C INC L

- 05 DECSB 33 INC SP
08 DEZ BC EDAA IND
8]8) . DECC EDBA INDR
15 DECD EDA2 1N
18 DEr DE EDB2 INIR
10 DECE €9 JP{HL)
24 DECH DDEY JP (1X)
28 DEC HL FDEQ Pyl
D028 DEC IX DAB40S JP C.NN
FDZ8 DEC Y FAB8405 JP M.NN
20 DEC L 028405 JP NC NN
i DEC SP 38405 JP NN
F3 DI C€284G5 JP NZNN
102€F DINZ DIS F28405 JPP.NN
FB €l EABA0S JP PE NN
£3 EX {SP) HL £28405 JP PONN
DDE3 EX (SP1IX CAB405 JP ZNN
FDE3 EX (SP)1Y 382E JR C,DIS
08 EX AF AF’ 182€E JR DiS
£E8 - EX DE HL 302E JR NC.DIS
09 EXX 202¢€ JR NZ.DIS
76 HALT 282€ JR 2.D1S
£D46 iMO 02 LD (BC)LA
EDS6 M 12 LD (DE)A
EDSE ™M 2 77 LD (HL).A
€ED2?8 IN ALC) 70 LD (HL).B

L D820 IN A.(N) 71 LD {HL).C
EDA0 iN B.(C) 72 LD (HL).D
EDa3 IN C.IC) 73 LD (HL)E
£D50 IN D.{C) 74 LD (HUH
£058 IN E.IC) 75 LD (HL)L
ED6O IN H,1C) 3620 LD (HL).N
D68 IN L.IC) DD7705 LD (IX+d)lA
34 INC {HL) DD7005 LD (1X+d} B
DD3430% INC (1X +d) DD7105 LD 1X+d).C

L FD3405 INC (1Y d) DD7205 LD (1X+d),D

— R
pDD71305 LD (1X+d}).E
DD7405 LD (X+d) H
DD7505 LD IX+d).L
DD360520 LD UX+d).N
FD7705 LD iY+d}.A
FO7005 LD (1Y+d} B
FD7105 LD (Y +a) C
FD7205 LD LiY+d).D
FD7305 LD (1Y +d)E
FD7405 LD 1Y+l H
FD7505 LD {1Y+d) L
FD360520 LD (IY+d)N
328405 LD (NN)A
£0438405 LD INN) BC
ED538405 LD (NN} DE
228405 LD (NN} HL
DD228405 LD (NN)IX
FD228405 LD (NNLIY
ED738405 LD (NN}SP
0A LD A.(BC)
1A LV A.(DE)
7€ LD A.{HL)
DD7EDS LD A.(1X+dl
£DTEOS LD A.(1Y+d)
348405 LD A (NN}
7% LDAA
78 LD ASB
79 LD AC
7A LDAD
78 LD AE
7C LD AH
EDS7 LD A
7D LDAL

- 3E20 LD AN
46 LD B,(HL}
DDA4605 LD B {1X+d)
FDA4605 LD B.(1Y+d}
47 LDB.A
YS! Loss
a1 LDB.C
42 LDB.D
43 LDBE
a4 LD B H,NN
45 LbstL
0620 LDBN
ED4BB40S LD BC,INN)
' 018405 LD BC.NN’

APPENDIX 3 Page 4

PP]

cBCC SET1H CBF2 SET6.D 30 SUB B
CBCD SET 1.L CBF3 SET6E 91 SuB C
c8D6 SET 2.({HL) CBF4 SET6.H 92 sus D
DDCRBOSD6 SET 2.{1X+d} CBF5 SET6.L 33 SUBE
FDCBOSD6 SET 2.{1Y+d) CBFE SET 7.(HL) 94 SUB H
CBD? SET2.A DDCBOSFE SET 7.{1X+d} 95 SUB L
c800 SET 2,8 FODCBOSFE SET 7.41Y+d) D620 SUB N
c8D1 SET2.C CBFF © SET7A AE XOR (HL)
c8D2 SET 2D CBF8 SET78B DDAEDS XOR [1X+d)
CcBD3 SET2E CBF9 SET 7.C FDAEDS XOR (1Y +d)
cBO4 SET2.H CBFA SET 7D AF XOR A
CcBDS SET 2,L CBFB SET7E A XOR 8
cBDS8 SET 3.8 CBFC SET7H a9 XOR C

- CBDE SET 3,(HL) CBFD SET7 L AA XOR D
DOCBOSDE SET 3.(1X+d) c826 SLA [HL) AB XOR E
FDCBOSDE . SET 3.liY+d) DDCB0526 SLA {1X+d} AC XOR H
CBODF SET 3.A FDCB0526 SLA (1Y#d) AD XORL
cBD9 SET 3.C c827 SLA A EEZ0 XORN
CBDA SET 3.D €B20 SLAB '
cBDB SET 3.E cB21 SLAC
cBDC SET 3H cB22 SLAD
c8DD SET3.L - CB23 SLAE
CBEG SET 4 {HL cB24 SLAH
DDCBOSES SET 4,(1X+d) cB2S SLA L
FDCBOSEG SET 4,(1Y+d) CB2E SRA (HL)
CBE7 SET4.A DDCBOS52E SRA {1X+d)
CBEO SEY4B FDCBOS2E SRA {1Y+d)
CBE1 SETAC CB2F SRA A
CBE2 SET 4D cB28 SRA B
CBE3 SET4E cB29 SRAC .
CBE4 SET 4.H CB2A SRA D Exampie Values
CBES SETA L cB28 SRA E
CBEE SET 5,(HL) cB2¢ SRAH
DDCBOSEE SET 5 (1X+d) cB2D SRA L
FOCBOSEE SET 5,(1Y+d} CB3aE SRL {HL) :
CBEF SE; ?,'2 DDCBOS3E SRL (1X+d) nn EQU 584H
CBES8 SETS, FDCBOS3E SRL {1Y+d)
CBE9 SETSC CB3F SRL A - d EQU 5
CBEA SEYS5D ca3s SRL B EQU
C8EB SETS.E cB39 SRAL C
CBEC SETS.H CB3A SRL D n 20H
CBED SETS.L CcB38 SRL E
CBF6 SET 6 (HL) cB3C SRL H e 30H
DDCBOSFE SET 6,(i1X+d) CB3D SRL L
FDCBOS5F6 SET 6,(iY+d) 96 SUB {HL}
CBF7 SET 6.A D0O9605 SUB (1X+d)
CBFO SET 6B FD9605 SUB (1Y +d)
CBF1 SET6.C q7 SUB A .

APPENDIX 3 Page 5

MAIN REG SET ALTERNATE REG SET
AN\ 7\

4 N7 N
-
ACCUMULATOR FLAGS ACCUMULATOR FLAGS
A F A F
B c B’ c’
.] GENERAL
o E o E PURPOSE
. REGISTERS
H L H L
N
INTERRUPT MEMORY
VECTOR REF RESH
v R
INDEX REGISTER IX SPECIAL
PURPOSE
TER Iv 0
INDEX REGISTER | REGISTERS

STACK PCINTER SP

PROGRAM COUNTER PC

Z80-CPU
REGISTER CONFIGURATION

APPENDIX 3 Page 6

SUMMARY OF FLAG OPERATION

D? DO
P/ i
Instruction s 12 H vIN ! C | Commenn
ADD 3; ADCs Pirix i xiy 0 | § | 8bitadd or add wath carry
SUBs; SBCs; CP3; NEG b lx g xpvl 1 | B-bit subiract, subtzact wAth carry, COMPare and negets accumviaTor
AND s t LI ¢ tixipPlo fo } . -
ORs; XOR s d 14 Ix | tlx]pjo o [flomealiopeton
NCs § 1 ixttix] vio | e | &bitincrement
DECs t lpx by x b vy e | Bbitdecrement
ADD DO, §S o jo X |Xxix|elo | |16bitadd
‘ADC HL. SS P ix | X l X | v!0 {1 | 16bitaddwthcary
$BC HL, 5S X pxyxty |1 |t { 16-bitsubtract with carry
RLA; RLCA; RRA; RRCA te o IX |0 ;X}e® |0 { | Rotate sccumulator
Ris: RLCE; RRs; RACS; Ll lxjotx)e{o |4 | Rowwsnd shift locations
StA s SRAS; SRLs N c®
RLD; RRD g ix jo x| P |0 |® | Rottedgytleftandright
DAA f g sx by ix | pye |} | Gemal adiust sccumulator
cPL e {wmix 1t |x1e |1 |e | Complemantaccumuiator
SCF e e ;x lo|X]® 0 |1 | Secarry
CCF e o X | xix]eo 0|4 | Complementcarry
N (O) t 1t ix o x| P10 |e {inputregste indwect
IKI; IND; OUTI; OUTD x PP Ix i x| x|1 |e }\Biockmputand output
INIR: INDR; OTIR; OTOR X {rix Ixixixijv | 2=0H 8% Dothermse Z=1
-L01; LDD 3 xix|xjeixitijole }lek transier instructions
LDIR; LDODR xix!xtolxjolo [e Hprv=1itBC¥ D othenun PV=0
CPtL; CPIR; CPD; CPOR X1t Ix xix{t]y | | Blocksmarchmsruction
Z= Vit A={HL), otherwss 2> 0
P/V = 1it BL % 0. otherwisa PIV = 0

LDALLDAR t {4 ix 10 X [IFF{0 |® | Thecontent of the nterrupt wrable thp-fiop (IFF} w copreg mto

) . the P/V tiag
BiTb,s xitixtv|{x]| xjo |® | Thesmeotbiab of iocation s &s coped into the Z flag

~ The foliowing gotation is used in this table: :

Symbol Operation
c CarryAink tag. C=1 it the operation produced a carty from the MSB of the opsrand or resuit
2 2o Hag Z=1 i the result of the opersuon 1 zera. .
H Sw'h&S'\HmHSBMthcmdtbont
({4 Pusity ot overtiow Hag. Purity (P) and ovrrfiow {V) share the same tiag. Logical oprrations sffect this tHiag with the perity of

the resuit whils srithmetc pperations atsct this tag with the pvertiow of the result. tf P/V holds parity. PIV=Y il the result of
the operstion s ween, P/V=0 if result & odd. 1f P/V hoids overfiow, P/V=1 it the result of the operation produred sn overfiown
Half-carry fisg. H=1 if the add of subiract operation produced 8 CHFry in1o Of borTow trom bet & of the sccumumtor
Add/Subtract flag N=1 if the pravious cperalion was 3 subtract,

Hand N Hags are ua2d 1 comjucnion wth the decimal sdynt wstruction (DAA) ta properly correct the resuit into packed
BCD jormat {oliowsng 2031U0R or BbIraCion using cosrands with packed BCO tormat.

Tha Hag is attected according to the resuit oi the operation.

The Rag is unchanged by the speration. :

The ftag 15 reset by the opsanon.

The Hay it et by the operation.

Tha flag 5 & “don’t care”.

@/V fing afiscind accortsmy 18 the sverfiow result of *he operation.

#/V teg atisctad according 1o B parity rasult of the opecation.

Asry one of the CPU registers A8, C D E H L.

Any B-bit lscstion fec sil the addreming modes sliowsd tor the perncuiar mstruction.
mtmum&-ammmwmeu that smEITNCUON.

Any sa of the two index regswrs (X or 1Y.

Retrash counter.

Shit wive in range <8, 255>

16-bit welue in range <0, §5535 >

=

!.‘viﬂll“!“(x—a‘—— :

APPENDIX 3 Page 7

&-BIT LOAD GROUP

‘Lo V
SOURCE
EXT |
IMPLIED REGISTER REG INDIRECT | INDEXED ADDR NeME.
L IR T s TceloTe T WL tmulea] o tixeatresad ol n
(v 00 | FO | 3A [3E
! A LEO|ED|PF |70 |79 | 7A |78 |7C |70 | 7€ {OA | 1A |T7E | 7E | a |am
' 57 | s d id [n
,] B 00 | FO
| (8. (47 J40 (41 |02 |3 |as |45 | ae s |45 o8
: d d f
DO | FD
I ¢ ‘ 8F |48 |43 {4n |48 |ac 4D | e 4E | 4E ot
H d d]
| 00 | fO
{REGISTER | D S7 {58 |51 |52 |83 |54 |55]ss 58 | 56 18
: 4 d [
R 00 | FO
£ SF |58 |58 | SA |58 |5C |50 | 8¢ SE ! SE 1€
d d [
bo | FD
H & (8|6 |62 |83 |64 |85 |88 6 | 66]
d |d .
Do | FO
! L S |08 [® |sA {68 |sc e | s € | sE 2E
1 [} d L]
DESTINATION {HU mlwe | fa s | »
- "
REG
INDIRECT |(BC) "
{0€) RV
Do, 00 ;D0 | 0OD{ 00| DD DD 0o
T minlnlnlninlns 3
o |d ld |d |a |a |4 n
INDEXED FD | FD | FO | FO | FO | FO | FO FO
five] - 70| n 1213 |w!s &
4 |¢ 1d |a |a |d & a
7
EXT.AGOR. | (o) .
. . . |
€0
b !)
IMPLIED
€0
" «F

APPENDIX 3 Page 8

8-BIT LOAD GROUP

Symbolic Fup | Op-Cade Beof [RaollliBeolT
Muemaenic Oporstiea | § [2 W PR TC i1 523 119 Hex Byws | Cycles | Stases Comanauts
L0 t—1 o |oiX|eoefX|®]|eje Dl ¢r 1 1 4 [] Reg.
LO0ra - ften- e el X|s i Xj{®jeoie (G0 ¢ V8| - 2 2 7 000]
- - . L VI
LINCIY) r—(HD je jeo|x|e|xtioefeajein ¢r 1o 1 ? T -jowe D
LD fiXed) Jr—lixett o [aixlo|x{e]e]|ejtrarnnin oo |3 5 19 o1y E
0t ¢+ 10 W H
-4 - ot
Lo tYsd) [raliYed) jo @ X[@i X || o] 1111010 D |3 5 1 m A
01 r 110
- -
LD (HL)r (HU) —¢ e lolX|eolX|e}e e 0l 1107 1 2 7
LOUXr |(Xwdler |® 1o X {®|X |0} eLe 11011100 oo !3 5 18
101 110 1
-8 -
LDUY+dr JliYsd)—r @ @] X @ | X 0] oo li1 111100 FO |3 5 18
‘ 01 110 ¢
‘ -d - .
LD (ML » HU<a |o je|{xieix|oe|elojoortong | 3 |2 3 10
- A - .
LOX+)m {{iXedl—n (& [€ | X | ® | X o[e e 11011101 oo |4 5 13
i | © loo v t10 3%
i -4 -
-— N -
LOGY+d),n (liYsdlen |® |0 [X! @ | X o |eie 111107101 FO |4 5 18

poNoNg | 3

-4 -

1 hadil) -
LD A, (20 A-(8C) e lelxjieix e oie 00001010 BA {9 2 ?
LO A, (DE} A=0E) {o 'e|x{e|x|e]|e|e 00011010 1A |1 2 7
LO A (nn] A—{nn) (o jeix|eiX!e®]e e p)111010 A |3 4 13
-— N - M
-— N -
LO(8C), A BO~A |o [efXx X je|e|e (000000108 02 1 2 7
LO(DELA |(DEI=A 1o [e X |e |X @ @/ e 00010010 42 |1 2 7
LD (nn), A (A jo jo X X |{e}|e e 00110010 2 13 4 in
- n - ! H
- n - H
DA A~ Pyt xtolx SFFjo s (11201100 E0 |2 2 L}
. 01 010113 57
LOAR ja=R Jlidixlo|x pFF| o0 |e 1110010 €0 |2 2)
o1 a1y 5F
LDLA I-A e jeixleix|s|e]e 11101100 €0 |2 2 LI
- , 01 000 113 a
LOR A R—-A e leix|olx|» e e (11101101 €0 |2 2 L]

g1 001 11 4F ! {

Mows: tismeamsanyol therspors A 8. C D E N, L
IFF the canmnt of the interrupt snebis flip-fap (IFF) i copied nte the P/V flag

Flag Netatien: = fiag net stfscted, 0 = flag reser, 1 = flag 31, X = Hiag s unknewn,
1% fiag i stfected according tu the resuit of the cperation.

APPENDIX 3 Page 9

16-81T LOAD GROUP

‘LD’

PUSH' AND 'PO#

SOURCE
T 1
[! i
WA | EXT. | REG. |
REGISTER , EXT. |ADOX. | nOIR. .
e i
! |
AF 8C DE HL i sP [} 9) 4 nn - tnn) sM
] .
E. t —
! |
|
AF Fr
! :
01 I €D ;
L " B 1 e
n
[{ n
1
1" ED
R DE . % 1 g
3 : i " :
& i
! .on 2A
DESTINATION] S HL " a £1
T a, A
E
R 3 EC
oD Fo
78
sP Fg o ey . !
]
n
oD 0o oo
7 2A
[3 4 l . . £1 |
! n a :
O ooy |
2 2A
Iy : : &
n i
- €0 ED n ED oo | Fo
X (a i Bl T G R
ADOR. a " a [n n
)] [] [, [] t
PUSH REG. po'{ fp
INSTRUCTIONS IND. (sn s & os 8 &s 13
NOTE: The Ak & Pop Incoructions sdiust ror ‘
the SP afmr svery sxscution. «t INSTRUCTIORS
R —————
IR)

“APPENDIX 3 Page 10

16-BIT LOAD GROUP

[Symbekg | _ Fipgs { 0p-Cose Re of [N sftdKaotT
Maemanic | Operstien BEREAENY P/V] M1 C 75 543 218] Hex | Byws | Cycies) Stsees | Commean
WDgdnn ;dd=nn ;-I- X{elXie o] o040 001] ER T 94 Par
1 1 ‘ : fe a o 00 B8C
' v i e a = 01 DE
LBiXar |IX~en (ejeix|exjele ielnonig] 00 |4 4 14 10 ML
! : ¢ 103 108 008§ 21 1n s
i { - B .-
. -] bt *
LOIY, an 1¥ =« nn ,eole X |eix|ele el 11 117 1 FD 4 44 4
; : 00 100 00V | 20 .
H - n -
. Do ~ n =
LOHL (na) | H =~ (ansl) T @ '@ x]-[xgo e {eloo101010] 24 |3- 5 18
L -} i ! i - n -
. ' s H . - a -
LDad inn) [day~(nnet) [@t e | x e xie]e eliz10t101] ED |4 s 20
ady ~ian) o1 a1 o1
- N el
- -
WX (oa) [iXg=innel) @ le | xJe | x |0 lo:eingnin| oo |s ¢ I
IXL = {nn) i 18 101 010} 2A
! A e & =
t I - n -
LOKY, o} | i¥y~innsl) | @ @ i X] e x| e e]1r 1111011 FD K 5 20
1Y ={nn} ' | 100101 00| 24
+ N R - ! !
bz {
LDlanl HL [fonell=H [ojefx|o {x|ele ’ w00 22 3 5 i1
{nal =1t { - n - |
- n - i
LO{nnl.dd | (onel) —ddy| o e | X o X oo o110 t01| €D |4 i 8 0.
(nn)~ddy 01 ad0 011 :
I L '
. 3 i | - a - . ‘
LOfanl 1X jlanstl—iXy| @ o I x|e [x]e je [aingiior]| o0 |4 E .20,
{na)—1X¢ ‘ 00 100 010 22
[e A= ,
= = |
LDl IY ftaneti—iYy| olo | x|o [X[o et 111101] FD |4 8 iz
inn) = 1Y I loorocow| 22 !
T R S H
R D
LDSP. HL [SP ~ WL efefxjelxfetie jortrimnon| F3 |1 1 e
LD $P, IX P - iX sle|x|e xje’e feinonin] oo |2 P2 ha
< Yoy inton| fs j
LOSA Y [P -y ele|xjeix|oie jejisnin) 0 |2 2. i
1100t F 99 Par
PUSH qq SP-2) —qqr | o|e(Xx|e Xl e)elgim IR '3 n lgg s8¢
SPV) - qan| J ! | \ b oot
PUSH IX 1SP-2 —ixg|ele[x|oix|ole ioinnonnw| oo {2 {4 115 110 ML
. 1SP1) = Ixy : P11 100 101 E5 i : [aF
PUsHIY P =ivpfe e |x e |x]etle lainmmim) o |2 |4 s
ISP} =1y i 11100 101.] ES ! ' ;
POP oq aan=(5P+1) [o fo | X je |x |e i® | o111 a0 001 R T FT R
aqy ~ P} | I ! ;
POP X IXp=(SP+1) | o | I x|o tx o jo lejrionioi| oo |2 Y ST
Xy —15P) I p1we oo | € o
POP LY IY=(SPel) @ @ | X |0 X8 {e [o{11 111101 FD 2 | 4 114
1Y ~(8P) i 1 in.aocooo| e ! |

Notes: dd s any of the register pairs BC, DE, HL, SP
QqQ 13 any of the reqister parrs AF, 8C, DE, HL
(PALR}, tPAIR) (reter 15 high order and Jow order mght bits of tha FaQiSter pau rexpectively.
eg BCy = CLAFy= A
Fiag Notation: @ = flag not atfected, 0 = Hag reset, 1 = flag ser, X = tag 15 unknow b
Uhg 1 attected accarding to the result of the operation

APPENDIX 3 Page 11

EXCHANGES
‘EX" AND "EXX’

BAPLIED ADDRESSING
AFF | 8C.DE'8HL | KL 1X iy
AF o
8C,
purLiEo 2‘ Ds
HL
0E " EB
EG. (s? 5] o0 Fo
NDIR. €2 £2

BLOCK TRANSFER GROuP

SOURCE
REG.
INDIR.

LIV

DESTINATION

REG.
INDOIR,

(DE)

€O ‘LOV ~ Loed (DE) < {HL}
Al Inc HL & DE, Dac 8¢C

€D "LDIR’ ~ Lood (DE}={HY
B0 Inc HL & DE, Do BC, Avpent wntil 8C = §

ED 'LDD’ ~ Load (BE) == (HL)
A Dec HL & DE, Dac 8C

ED "LDOA’ ~ Loed (DEl={HL}

L1 Dec HL & DE, Doc BC, Repsat unyid 8C = 0

HL points » soures .
DE points 10 destination
8C &by cownter

|

BLOCK SEARCH GROUP

SEARCH
LOCATION
REG.
{NDIR.
(HU
ED cer
Al Inc HL, Dec BC
ED *CPIR' ~ Inc ML, Dec BC
81 repeat until BC = 0 or fing mateh
EDC
‘PO’ - HLASB
A9 CPO’'— Doc ML A BC
4] ‘CPOR" — Dec HL & BC
-L] Rapsst vatid 8C = 0 or find mexch
HL points 1o location v memory
16 be comparad with J
contnty
BC is byte counter

APPENDIX 3 Page 12

EXCHANGE GROUP AND BLOCK TRANSFER AND SEARCH GROUP

Notes: (1} P/V flay s 0it the result of BC-1 » 0. otherwise P/V 2 1
@ Ztisgis 1 it A= (HU., otherwiss 2 = 0.

»

Fiag Notation: -® = fisg ot atfected, 0 = Hag iwset, 1 = flag s8t, X * fiag 1t unknowm,
’ | = tiag i atincidd sccording 1o the rasuit of the operstion.

APPENDIX 3 Page 13

Symbotic | F Op-Cade Ne. ol |NestMiNestT
Meemomc| Oporution (3 | 2 H PIV] B | C [78 543 218 Hex | Byws | Cycies | Stress | Commnsets
EXDE HL|DE-HL e e |x|eixle|ejeniioronl e |1 1 4
EX AF, AF' | AF —AF e el x]|e|x)eje e poooyooo| 08 |1 ' 4
EXX c-8C eje|x|e|xjejie|snronnoorj o8 |1 1 4 Registar bank and
(:\E‘DE') ” wriary regatar
WL —HL benk sxchange
TEX{SPL ML H ~iSP+1) jo |e I'x |e I X]| o e e 1y 1000t E3 |} s 1.
L —isP) !
EX{SP)IX | IXy—iSP+1)| @ o | X @ X | ®1e | o 1011 101| DD }2 s a
X —SP) - 1 100 011! E3
EXISPLIY | IYy—=(SP+1)i® @} X |® X }j@te e n1ti01] FO |2 s I
1Y —isP | 11 100 011 E3
LD {DE)—HL ‘e (e | X |B]|X C‘) gjs 1101101 ED |2 4 16 Load (HU) into
DE — DE+1 | 10 100 000| AQ {DE). increment the
HL = HL+Y | pointers and
8C —8C1 ¢ decrement ™e byte
i counter (BC)
LDIR (DE}—HL o, je | x|0|x]|alole prioi101] ED |2 11 21 HBC# O
DE = DE1 § 10 110 000 B0 |2 4 18 #HBC=0
HL ~ HLsT |
BC ~BC1 ;
‘Repeat until ;
BC=0 :
% @
LoD IDEV—HU jo [e | X |0 (x| 0}t 100101| ED |2 4 16
OE - DEY | 10 101 000 AS
HL = HLT
8C - BC
LODR DE)—HY ‘e {s{XxloiX|0[0|® prr01100| ED {2 5 2 HBC% 0
D€ — DE } 10 111 000] 88 |2 4 16 WBC =0
HL —HLT &
BC —BCY
Repeat until |
8C=0 ;
4) ®
P! A-{Hy 1y ‘ pix | dix| 4ty jeponon| E0 |2 4 16
HL = HLsY | 10 100 001 Al 1
8C —8C1 !
@ ® .
CPIR A - (HU' fretx i x) ppv e prioyong ED 2 5 rl| 11 BC # Qand Aw (KU
== ['HL = HL#1 no 110 oo1] 81 |2 4 16 HBC=0ocA=(HL
BC —8C1
Rapeat until
As={HL or
BC=0
@ @
cPO A-(HU titixtdIxitit e priosol) €0 |2 4 16
HL = HL1 0 101 001] A9
8C —-8C1 1
@)]
CPOR A~ (HL tlfixftix)itivjehronon] €D {2 s ln 11BC#0and A VML)
HL = HL-1 | ' N0 111 001 { BY |2 4 16 I1BC=0or A= (HL
BC ~ BC1
Repeatuntil | |
A={HUor
BC=0

»
.V

8-BIT ARITHMETIC AND LOGIC

SOURCE
REGISTER ADDRESHING AEG. INDEXED Luuen.
INDIR.
A] t 0 3 H L HU [(iXed) |(1Yed) .
« 00 O
‘DD’ 87 8] 8 5] 7] 15 " 8 85 ce
’ 1 e 4 1
] oD £D
ADD w CARRY ¥ | n 8 3A 1] ac 80 113 i 8E 3 CE
‘ADC i _ _i d d)
) O i
SUBTRACT L 1} %0 1] 92 | -93 Y] 95 36 36 % | 0§ |
"SUs’ i | ¢ d 4
R I i T T oo 0 :
SUB w CARRY 5% |8 L] 3A L1 s £1] 9 | g€ L1 DE !
‘S8C . } L _‘_[“ d . d R |
{ oo | fo !
‘AND’ A7 | A0 Al A2 A3 M AS AS A6 AB £5
) d d n I
: T T oo FO :
"XOR' AF | a3 AS AA A3 AC AD AE AE AE EE
d d n ¢
'_') T oo [Fo !
‘0R° 87 |80 | e | b2 | 83 | 84 | ®s | 3 | 86 1 ® | F5
}.____._.. v — P S S S, _ d l,- d_ ._..._.2.._.._:
! oo " FD
COMPARE oF | 88 ”n BA .1} sc | 80 BE BE BE FE
o 1 d d n
‘-——-——‘ ———————— " - .%——--- DD _L B -Fu-v -)——--—
JINCREMENT ic | o oc " e n € i Hu 3 u
i e | i 8 d
i -) T RO I T
DECREMENT - | o 00 15 10 P43 0 35 35 3
i OEC i | 4 d

APPENDIX 3 Page 14

P

8-BIT ARITHMETIC AND LOGICAL GROUP

Symbatic Fiags | opCede | He.of Moot mie0t T
Muemenic Operstn |S [Z ¥ [H| TFV] W C 78 543 218] Hex !Byt [Cychs ;Sutes |Comments
ADDA T - |[A=Atr g;x;x!g‘va“l 1008 - 1 1 ¢ il Res.
ADDAS LA -Aen [P pxi b vie s b nQRONe-— 2 - 7 (o000 8
| A A S J L 001 c
SR ; IT I
ADD A (HL) | A = A+{HU ! Vit xiyixbviofy hoggne 1N 1 to1 E
ADD A, (iXedt [A-Aslixedt | 403 x4y xivieidinonio o0 }3 }s 19 oo H
P : ‘10 @611) o L
i ol | P-4 - l im A
ADD A (1Y+d) |A=AsliYed) { 1 j 8 [X]t XIVi0 3 01 FO§3 S fg !
| | b i 10 @oa} 10 i ! i
| RENRRN RS - .
ADCAs PAacaneCy il x:ylxivioity @0 i ‘sisanyotr n,
SuBs [A-A-s Eyatlxl dix AARRE P ; {(HL), (1X+d),
SBCA s A-A-s-CY ‘ Piti XI 3';le iy @ i 1Y +d) a3 shown for
AND s lA-A s [Pl xi xR o0 i (ADD instruction
ORs lA-Aws P pppixjpbIx P00 ‘ (iR ‘The indicated bits
XOR s A-Aes | 11 x' } xlv olo [y ! wreplace the {080] n
cPs A RIRIEINIE SRR EE | [- ithe ADD set above.
INCr fraee HEERRIR x}v 0je (oo r (T00H 1 {1 o
INC (HU HHU=(HUs1 L L] x| | x|v]o]e o0 no(ag 1o ST
INC (1X+d) i(lxnn - Prppextrix ! vio|e 1monoij 003 6 L2
D 0 R : .00 110 (1G4} {
i o ! y- d - ,
INCUY+d) i lIY+d) - topixbglxivioje o] F0 13 6 Px]
' i Qiyed)a i Lo oo 110 {100 ;
: ! . i- d - i
DECs js=3-1 it lxivinle] g sis2 yof 1, (HU,
: ‘ : ;) {1Xsd), 1Y +d} 2
| ! [| ‘shown for INC.
! | i) 'DEC same format
‘ ' | tand ttates as INC.
! ! ‘ 'Replace with
] ! b inOP Coda. -

Notes: The V symbot in the P/V fiag column indrcates that the P/V fiag contans the overtiow of the result of the
operation. Simidarly the P symbof indicates parity. V = | means overfiow, V = 0 means not overfiow, P » |
means panity of the result is sven, P = 0 meang parity of the result is odd.

Fiag Notation: ® = flag not affzcted, 0 = tiag resat, 1 = Hag sat, X = flag is unknown.
§ = tlag is aftected according to the resuit of the operation.

-

APPENDIX 3 Page 15 -

GENERAL PURPOSE AF OPERATIONS
: MISCELLANEOUS CPU CONTROL

Decimal Adjust Ace, ‘DAA’ I n "NOP']
1
1
Compitement Acc,-'CPL’ F CHALT 78
‘NEG™ €0 I
:‘;:'::m;:mf, “ | DISABLE INT “(O1)* £3
: Complement Carry Flag ‘CCF’ ¥F | ENABLE INT (E1Y]
| Set Corry Fing, “SCF* - lssr iNT MODE 0 ED 1 yisoa MODE
L . IN 0 6
isn "?“MSDE ! i ;? , RESTART TO LOCATION 0038y
SET INT MODE 2 ED | INDIRECT CALL USING REGISTER
M7 SE .| 1 AND 8 BITS FROM INTERRUPTING

DEVICE AS A POINTER.

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

Symbelic Flap Op-Cade Ne.of NooiMimmofT
Mwemenic | Operstion 3727 H PNTRTC 176543 210] Fax | Bytm | Cycies | Sustss | Commests
0AA Conwarace, | | |+ X[l! P ’ TR T) 1 1 4 Decimal adjust
content snto i . : l } sccumuiatar
pecked 8CO | | Lo P
lc“mnq:dd.; ’ E ' .
of mbtract | ; 1 i P l ;
with pscked ! ; o p '{
BDopwrands, || | | .
cPL A-K . |e ey Xptixketrjeioatorinf 2k |1 |y 4 Complament
i o accumaiutor
: i | Py i
i '] | L ‘ {One’s comprement)
NEG fA-Ter j 41 xi ’ X{vitjfmwenmf e |2 2] Nagate sct, ftwa's
H o i} 101000 100; 4 compiement)
ceF (CY-TY ielex|{x|x|eio ion man; 3 | 1 . Complerent carry
; o | tiag
SCF | eY-l oile i xlo {x!é 0100 oM 33 i 1] Set carry thg
NOP - i Noopenstion| ® {® | X |® | xie!e 100000000, 00 |1 1]
HALT ' CPUMd [® (e | X|o | x[o]o|elottiomn 76 |1 1 4
D1 [IFF <0 {eje]x|o|x ejelelnmoon] F 1 4 ! s
| LEE =1 ioe X|je | x|ejele in mon| 8, |1 1]
M0 !Setratorupt [@ jo | X1e i xie|ele 1o e} b 2 2 s
" mode 0 : } 01 000 110| 48
] P Setmtorupt | @ Jo | X o | x (o |e|ehiipiior] en |2 2]
: mode | | 01 010 118 56
M2 gs«snmmm‘-'- X|o | Xxjefe et100101. €0 |2 2 '
! mode 2 ‘ 01 011 1) SE |

Mates: * IFF indicates the intarrupt anabie Hip-Hop
CY indicates the carry fiip-flop.

Fisg Notation: ® = tlag not affected, 0 = Heg reset, 1 = fisg sat, X = flag 18 unknown,
{ = fiag u stiacted according 1o the result of the operation.

APPENDIX 3 Page 16

18-BIT ARITHMETIC

SOURCE
3 DE H s X iy
HL o9 |19 - | a- .
%
‘ann bo 0o oo 00 !
ADD X 1 e | 19 1’ | 2 |
A wy FO | fD FO |
i] 19 3 n
DESTINATION L : !
" ADD WITH CARRY AND w | 0 ED €D £0 !
SET FLAGS "ADC’ : 4A 5A 6A A |
. 3
SUB WITH CARRY AND "L ; ED ED ED ED i
| SET FLAGS - 'SBC’ LA 52 52 n ’
O T T i
. e 0D FD |
: INCREMENT INC ® 1k pa] 12 - 23 |
i
{_' ‘DEC 0o 0!
DECREMENT DEC 08 18 n 3 » 2
168IT ARITHMETIC GROUP
Symhoiic | Fiugs OvCode | Moot [MasitdnantT]
Masmenic Opwrotion 12] PNTE [T8 843 210] Hex | Byws |Cychm | Somms | Commmmts
ABOHLm | HL ~ HL'm e [e [X X[{X[®]| 8] |00m 081 T |3 TR Rog,
. . 0
ADCHLm {WL-HLsmecy|) | pix | X|x|Vvio|t | 02 s 15 |0 DE
0l =t 018 ¥ KL
] .}) 11 s
SBCHLw [HL-HLaCY | {3 X XIX|{V]|Vviy{inienie] €02 |4 ‘18
01 = 010 .
ADOIX.pp. [IX =I1X4pp [® |[eo | X | X|X]® | &)} 11011101 DO ;2 15 | Reg.
00 ppt 001 0 BC
‘ .0t DE
: P ; . ! 10 1X
! 1 : | ! ! ! n s
ADDIY,m |IY~iYer .o jeix|x|x!ef8|pnmmanj f0j2 @w |15 !n Rey.
! P 00 1 001 i 00 BC
H | ! o1 DE .
. ! ! [10 1Y
) ; I ' n sp
INCs ‘memet ejoeix|oix|e -l-m-n o1 1o s -
INCIX fix=1xer o joeixjeix/elejopnigman| ooj2 2 LI
: : i N 00 100 011! 23
INC Y Y <1ver e e ix eix|ele emntion FOj2 2 10 |
] [\ ! i 00 100 011] 23 |
DECw in -8 (¢ jeiX|eix e |eleio0al 0N 1 1 s l
DECIX PIX = X -1 e e (X |e (x| sinon] ootf2 R 10
: P i 0o 101 o11| 28 ‘
pECIY 1Y - 1Y . i' xXleixlejojentntdt] /0 ;2 R 10
- ‘ i { 00 101 01| 28

Motes: 383 sy of The regester pines BC, DE, HL SP
pp 1 any of the reqester pairs BC, DE, IX, SP
7 13 arvy of tha regester pairs BC, DE. 1Y, SP.

Fiag Nonation: © = tiag not atfected, 0 = fisg reset, 1 = Mag et X = tiag it unknown
} = tiag o sfincted according 1o the resuit of the cosration.

APPENDIX 3 Page 17

ROTATES AND SHIFTS

S,wundlkniuo’u

r—
T SR I g1 E | M |L muLx«wnul A
i Do | FD
sl cslcajes|ce|ca|cafcsles|ce
» . ba U
RLC') o7 1 oo o1 | a2 |ea | o¢ |os | osfe |4 Lear &
| | 08]
0D | FO
calcalcalcalca|cajca|cajcjce
» m‘
RAC| el os | os | oAl os | oc|oo|oele |4 e W
o€ | OF
00 | FO
_ lcalcs|ce|ca|ca|cajce|cajcs)ce e
RUl Slvelnfalslwl{isisle | RLAY 17
: 1§ 11
oo | D
cs!|calca|cajcs|celcea|cajcs|cs
» . 3 # F
Tvre AR | sl |1e | 1a{8|lic||1E;d |4 RRAY 1
oF Lie | e 1
ROTATE e =T
oR
tca|calcalcaca|cajcajcajca|cs
SHFT [SW| o0l 0 Ly 2| a3 jaef2s|2s|a |4
| % | ®
, 00 | FD
| 8 || calcajcafcajcaceicacs
sFl2 | |24, 28| 2c] 20| 2€|d |4
2€ | 26
00 fD
N | oo | cajcajcajcajoacnycajcsfos
3¢ {as |29 |3a| 8 |3c|30|3E|a |
3E | 3€
bR LD’ :g
RRD’ 2’

[CY ottty = b0 Lo Creuta
"EE_::::]'—] :?:tt" Cireular
e

iy

v m'-mm
E@‘J ::h‘t Arithmetic

(= r—EZ—-Z}-J ot Logesl
T - g o 0

ACC

e o o L

~ACC & —————

APPENDIX 3 ‘Page 18

ROTATE AND SHIFY GROUP

Symbelis Fiogs Op-Code Nontine. ot | a0l
8 . I | M|
Meemanis Operstiea s] v C [7€S43 219 | Hex |Bytm CyciesSwens| Commonts
RLCA EY-LT=—014 ololx X|e tlos0oo 111] 62 1 |1 |6 | Rotasieht caesiar
A 7 ” accumulator
.
ALA m eleixlefxie jlsois |12t |1 {8 |[Roumish
A sceuristor
RRCA @-&ﬂ ejeixlio|xie $ /08001 111| OF [1 11 {4 | Rotwt right circuler
A . accumulator
A =gy |e|e|xfoixis tlosorr il 1f |t 1 1o |Routarign
A ' - sccumuiastor
RLCr \ tltixlolx]e phroosot|cs |z |2 |8 |Rowteish circuar
00 BOG] ’ fopster 1
ALC (HU 1isix]|sixir Yoot onngce iz e s e Reg.
100 [oog] 110 000]
. 001 c
RLC (1X+d) | > yhilxfoixie fimentr|oofs |8 |23 |mo D
‘ LAHL, (1X+¢), (1Y +0) 11000 01| C8 on E
. -d - di00 M
joa 50d] 110 101 L
i A
RLC (Y+d) || tielxf{oalxie tmmamawl Foje |8 |23
11 001 0331} C8
- d -
oo 03] 118)
ALs flixjoixte I 1 Instructiea focpat and
=0, (MU, (1X+d) (1 Y+d) . states are a showm for
RLCs Teform mew
RRCs fid]xjoix|r I i Op- Code repiacs [500]
s =, (HU,(1X+d). {1 Y+d) of RLC's with shown
code
s | =o—vP {i{a|x|oix|{r|e|)| @D
$ =0, (HU, (1 X+d), (1Y +0) . ,
StAS o |titfxo|x|r i)
$Z(HL,(1X+d) (1Y +d) : i
SRAs t{yixjoeix|r V| @m
3 =1, (HU(1X+d), {1 Y+d)
saLs 0 it tixjax e {6
8 =, (HU, (1X +d), (1Y +4) g 4
RLD A @mu tlilxlalx|p|olemictioi|en |z |s |18 [Rouwagtienand
Bt 101 111 | SF right between the
. . and iocation (HL).
ARD A @mu titixlo{x|plofem o] eofa |5 |18 |Thecontematthe
. : 01 108 1114 87 upper hatt B the
. accumulator is
unafiectud

Flag Notatiea: © = fioy not attected, 0= flag resst. 1 = flag aet, X = flag s waknown,
: { = fing is affucted accorsing 1o the result of the operation.

APPENDIX 3 Page 19

BIT MANIPULATION GROUM

RE
REGISTER ADDAESSING vy INDEXED
wr | s ¢] e |n L | mu jaxes | aven
1o |a o e oo o 8 | s | e
47 o 1 e 42 4 “ 45 4“5 % e
) s cs ce 2 cs cs cs cs s 34
&F 43 49 4A 48 4C 40 13 1 b
4
/ L o | |[o|a oo o s | 26 | cs
/ 57 0 51 52 53 54 55 5% e e
(. I,) cs c8 cs cs cs s | cs oo 2
est | 13 58 58 SA ! 58 5C 50 SE H e
BT s | c8 lcs | c8 rce jcs |c8 | c8 | &% | &
4 67 | 60 &1 7] 63 64 85 | 66 ¢ b
. |8 o T fea bcs os |ocs cs § & | &
[&F €8 59 A 68 : BC | 80 6E 2 s
- -] 13
. |8 [c8 |8 ‘ e |c8 jcs8 jc8 | c8 | & | cs
}] o' n n n oI 75 7 s a
! 768
; ca | ca ., CA 8 B | s c8 c8 EH 34
* TR 17} l 1 70 7€ % a4
, 8 c8 c8 8 | cs] 8 s | c8 &b 34
37 30) 82 3 8 oM 85 | 88 26 o
‘ s | c8 | c8 s : cs l s | c8 | c8 | o8 cs
8F)) 8A 13 ! 8¢ 80 | BE ! g 2
T + g
) 8 8 1 c8 c8 s | c8 ca 8 | 29 s
37 90 i
: 91 32 1 | WM 35 36 9. | 5
? . : | ca | cs8 cp c8 g c8 cs c8 29 £
RESET | 9F i 9 i 39 9A 98 ' S¢C 90 9E. o o
T B3
o7 , (@ 8 jc8 [cs [c8 |ca JcB | cB g8 | cn
‘RES Al | A0 1Al A2 | A3 M AS AE e .
A8
, | ¢ [[c8 |8 "t | c8 | cs 8 | co | cs
AF AS A3} AA AB AL AD AE e AE
R c8 c8 8 cB c8) c8 ca 2 s
87 80 81 82 83 84 8S 86 < e
. i es
, 8 cs cs 8 | c8 cs 8 c8 29 34
BF 88 B9 BA | 88 8c BD BE é a
IS § ‘ ae ae
o c8 c8 c8 c8 c8 c8 c8 c8 e &8 |
7 €0 ct 2 c3 o cs cs %a “.“!
< o
R , ;8 (8 jcB |c8 | c8B [cB |cCB [CB e8| &
i CF cs cs CA | CB cc o CE P %
) cs c8 | c8 c8 cB c8 c8 cs I s
0 00 D1 02 D3 D4 0s o6 | 2, 9
1 3 cs o] cs cs cs cs cs o] oL e
sET of 08 09 oA | o8 oc | oo oE | @ .
<ET- . cs cs 8 cs cs cs c8 | c8 13 4
£ €0 3 E2 €3 £) €6 N 4
j 4.
. cs | ts c8 cs cs cs cs cs 25 s
e | e |es Pea |es | ec |e0 | EE) 2 s
. ca cs cs cs cs] ¢c8 cs cs oo [
7 Fo fi- | f2 M) Fs Fs A a
, | 8 | c8 ca | co s 8 s | % cs
FF s 2] FA B e Fo FE Te Te

) ; ; APPENDIX 3 Page 20

BIT SET, RESET AND TEST GROUP

APPENDIX 3 Page 21

| Syobaic | Flogs ~ OsCode | Na of NesitaimastY
~Maewenic o Operation '3 12) PIV] B] C |78 543 718] Hax | Byws |Cyoim |Swews | Commmon
BTy, ¢ 2-Ty li xTg| x} v xjx]e]efiroonon| cs 2 2 [' Rog
. 0y r 000 8
giTe, 0 {Z-THLy ! x| 3l xjv|xixisjem&on| cs 2 3 11 00t S
61 » 110 L 010]
BITh IXedly [Z-(IXodly | X 8| X} vy x|x|0]|ejrtorni0r DO |4 » 011 £
V1 000 811 CB 100]
-4 - 101 L
o1 » 119 11t A
. » Bit Tested
aTL livedly (Z-0Vwdly | X| 1] X 1 (XX |0]e 11111101 FDO |4 5 2 000 - 0
i 11 001 Q11| CB . 001 1
| -4 - 010 2
0 » 18 om k]
100 '
! ! 101 s
: ! 10 3
. i 11} 1
SETO. ¢ y - 1 e|e| X|o®|X|®je | e11D0101} CB |2 2 t
ﬂ:ﬂ |
SETh, (HU jiHUy -1 e | e} x| ei x| e}ejei1)polong cs 2 4 15
qd » no
SETH, (iX+d) tliXedly -1 | @ | o] Xt @ Xje]|e o100t DD |4 6 b}
» 11 000 011 C8
- ‘ -
0 s 110
SETR, (1yed) Hivedip -1 [@ [o] xT e | X oo |olin 101, FO |4 6 n
{ 11 00 9111 CB
' - ¢ -
E 51 s no!
| ! !
RESH. 3 sy - 0 10 : To torm new Op-
i =r (HU, - ! Code replace {{1)
L {iXed), of SET b, s wnth
[livsd) {0]. Fiags and tma
states for SET
] ‘ instruction
Notes: The notation sy indicates bitb (6 te 7) or location &
Flag Notation: ® = Hiay 70t atfectied, 0 = flag reset, 1 = Hag sat, X = Hag is unknown,
| = fHiag ia stfacted acrording te the rewit of the cparation.
JUMP GROUP
CONDITION
i
us- el wom | pamreiamry| ums | Sam | ME
come. | CAMY | cogy ~1‘- ms | tvin | sue 7Y ros. | Bee
- [+] - MEBL.BA: B ;
~ " LHE . wmie] a [» [] » a []
D il EXT. s 1o 1g lo 1o |w la 1w 1
’ 18 (38 |30 |28 20
e » RELATIVE {PC+a) o 9| a2 | e-2]|e-2] o-2
T I N WL T &8
’ \
.- REG. 0o
e cip moir. | W9 | ey
. o o
e ¥ . N | es
e =-hDECRENENT 8, 1
s L iuup IF QN | RELATIVE [PC+e .?2
IERC ‘DNIZ” - 1

JUMP GROUP

Symbalic Flngs O9-Code Ne.of | Nasf MiNend T
fkwams nic QO persooce H R PAVT R TC 178 543 218 Max Bytes | Cysies | States | Cammants
P na PC - L] L] e {e e |11 00001 Q|2 3 19
- . -
- a - . lee | Condition
W ce, if condibon cz | ® . s je e |1l c 01 3 3 10 000 | NZ noa 1ero
is trua PC ~ na - & - 001 {2 e
otherwes - " - 018 | NC non carry
contave 018 | C cary
100 | PO pacity odd
101 | PE perity sven
110 | P syn positve
IRe PC~PCoe . . e {e = {00011 OGOy 18 |2 3 12 111 | M ugn negatee
- '.2 -
JRC e HC=Q . . e {e |® |DO 111000 38 |2 2 7 if condition not met
: - ez =i
Hec=1, 2 3 12 it condition is met
PC - PCee .
JRNC. ¢ HC=1, L] L] e e l' DO 110 000} 30 | 2 b3 1 it condition not met™
|continue | -l -
Hecea, | 2 3 12 It condition o met
PC - PCee
JRZ s H2=0 . . e .o | e {00101 OGO 28 |2 2 ¥ if condition nat met
jcontinue -2 -
Zst, 4 3 12 if condition is met
PC~ PCee
JANZ e HZ=1, . L] e ie |® |00100000] 20 }2 2 17 if condition not mat
|continue -2 -
HZ=Q 2 3 12 if condition & met
PC = PLes i i !
P KL} PL - HL L L4 ¢ [e Je 111 101 DOV, ES 1 1 }‘
t
2 UxXg #C - IX - . e s | @ 111 01V 101 DO} 2. 2 i 8
! 11101 00V E9
» Y PC-1IY ® e e ‘o js |11 111101 FD ;2 2]
. 11 301 o0y .ES
DINZ, ¢ 8 - B . L] e |e (o !D0OI0 000 10 |2 2] He=0
He=q -2 -
continue
i8¢0 | 2 3 13 HE40
PC < PCee i |
Notss: & reprasantt the sxtanzion in tha relstive sddressing mode.

Flog Notrtion: @ = fiag not sHected, 0 = flag reset, 1-= flag set, X = fing i unknown,

@ i3 signed two's complement numbar in the range <128, 129>

#2in the op-code provides an stfective sddress o pera m PCis
incrementad hy 2 pnor to the addition of &

{ = fiay is pffscted according to the result of the operation.

APPENDIX 3 Page 22

CALL AND RETURN GROUP

coNDITION
un- now NON [PARITY|PAMTY| mGW | si6w | RE.
COND. [CARRY [CAARY | 2ERO | ZERO | EVEW | 0DO | MEG. | Pos. | ss@
AL — co | oc | oe cc | c4 EC | & fC | K
EXT. L] ., L] [] " » [] a a8 []
L] "] L] »] A L]
RETURN REGISTER | (s}
‘RET' moi sy | @ [08 | D0 | @ o 1B s R A
i——-—- v
{RETURN FROM |REGISTER| (SP | ED
|INTSRETI INDIR. [spe1) | 4D
IRETURN FROM | . cisten | (sm | D
{NONMASKABLE ||\ 1% [tsPen) | 45 !
[INT ‘RETN o ;
NOTE - CERTAIN _
FLAGS MAVE MORE
THAK ONE PURPOSE.
REFER TO 280-CPU
TECHNICAL MANUAL
FOR DETAILS.
RESTART GROUP
or
CODE
0000y o | nste
0008 e | RsTY
c
A | oaloy 07 | ‘RSTI§
L
L
o018y OF | ‘ST
A
)
o | oozoy B2 | AsT3Z
' =
E .
s |omy | € | asTO
s
0030y n | asrar
0038, T | asT
APPENDIX 3 Page 23

Moemenis

TGalie 191 - 6]

CAlLce nn

RET

RET ¢ .

RETH

RETN!

RSTp

Symbaix
Dperatisa

(s - PC,
PConn

if condit'on
ce s fahe
continue,
otherwese
ame
CALL »a

POy~ (5P}
PCy - (SP+Y)

1f condition
cc i folee
|canbnue,
otherwass
mme &
RET

Raturn fram
nterrupt
Return from
non maskable
interrupt

(Sh1) - Py
(P2 - PC,
PCy - 0
PCL - »

!

CALL AND RETURN GROUP

Na. of {NeaiMitest T}
Bytw jCychs States | Comsmtnn

H

!
l
.

|
]

TRETN losds IFFy = IFFy

Flog Newtion: ® = figg not stected, 0 = flag reset. 1 = flag mt, X = fiag it unknown,

{
l
i
i

|
|

£0
D

45

F ! Op-Code
:!z‘} NE"‘WYI}:mmmzm
BERE el [e e 1noor 101l cO
‘ i - a -
i % * %on -
¢ 1 § |
o le)yxle X, ':‘;"ulm
P e -
. s
ol L |
i |
: !
- xf. x| ele e 00100
! ‘ H ..
eoje Xie x,‘- o ‘e |1} 2 500
L !
i Co
! !
]
o el xiewlxjote;eji1101 100
01 001 101
ool xis!ix]|eje et 101 101 kD
iot 000 101
| i
o o]l X]e X}e ‘l'"' "t

3 ‘5 i!?

|
t i
B 10

(=]
. A ke e——— —1
w
——
-4

] k] 0
:
i
!
|] lS
1 3 m
i
2 e i
i A
2 K} g"
b
| !
1 3 ln

{ = flag i affactad according 10 the resull of the operation.

APPENDIX 3 Page 24

|

If e o tatsa

{
|
l

i cc o true

i
|
|

i if cc s false

't cg utrue

1ee [Condition

gOOOiNZ
Som |2
!mo,nc
100 | PO
;lﬂl!PE
tugge
LR

jr_le
looo 00H
' 001 | osH
1010 | 10H
sOH 18H
100 | 204
j 101 | 28H
1110 | 304
| vor {am

non 2070
o

non Carry
cary

parity odd
parity aven
19N posItive
SIgh Negative

iNPUT GROUP

PORT ADDRESS
i REG.
IMMED. | v Din.
f
- | ({»]
'R A o8 | €0
3 2 8
G D,
’ s a0
A ED
1 0. ¢ 48 ;
. 1] 1 y ED
‘IN® ' H .
iNPUT “IN b oa) L so
e [, 0 en
s 58
INPUT s W . €0
OESTINATION 1 i 80
N i £C
G t 58
‘INF — INPUT & i ED]
tng H{ Dec 8 1 A2
‘INIR" = INP, inc HL, f 3]
Dec B, REPEAT IF B’ REG. HU { B2 BLOCK INPUT
‘IND’ ~ INPUT & INDIR : ED COMMANDS
Oec HL Dec B . AA_ 0
{ ‘INDR’- INPUT,Dec HL €D §3
t DecB, REPEATIF B T
OUTPUT GROUP
SOURCE
REG. |
REGISTER D, |
)
Al os c [} €] L Wy ‘
1
IMMED.{ n :3 :
our REC. | | €0 I ED | & | e | & |E0 | E !
IND. 79 | &y 49 51 59 61 | 69
‘OUTI - QUTPUT REG. @ EQ)
I HL Decb IND. i o : A3
‘OTIR’ — QUTPUT, Inc HL, |REG. o ' €0
Dec B, REPEAT IF 840 IND. 83 | BLOLK
‘QUTD’ - OUTPUT REG. - . : | €0 [ourteut
Owc HL Dec 8 IND.) - AB COMMANDS
‘OTOR'-QUTPUT. Dec HL |REG. (c;ﬂ [3/]
Dec B, REPEAT 1§ 890 |IND. - 88
v
PORT
DESTINATION
ADORESS

APPENDIX 3 Page 25

INPUT AND OUTPUT GROUP

| Srmaeic | Pl Oplade | Nast [ReotM e T
Moowosic | Opeaven '8 1 2 H PIVINTCTT8 543 21K res | Byms jCycm Starms | Comments
INAin) A~ s e |X|elxtele [eofrtonnon 08 2 3 1" e Ay ~ A7
! L, - a - I Att!uAs“A‘s
e (0 e =@ tirlIxfpixirlo fejtrion 10y 0 2 3 17 CloAg~ Ay
Jdes1100my | . : 61 ¢ 000 BioAg~Ag
i the Hags walf
’Nl"cﬂ!ﬂ -
! Q
LT jtu -0 I XX | x|x| X} 1e 110001 €0 |2 4 " CroAg~ Ay
i"l-' 10 100 Qi¢| AZ - .“A."’A‘n_
| ML= HL 1 :
MR MO -0 | xpr|xlixix|x|r|e (i e |2 5 n Croag~ Ay
s-8-1 ! ‘ 10 110 010f 82 (118 40) Brokg~fys
PHL - ML+ 2 4 1)
| Repaat unud ' . it 8 = o)
i8=0
. 0] . .
1D o -w@ Ix|rjx!x]x| x{1|e|niomio] e0 |2 4 % CroAg™ Ay
‘s -8-1 10 101 010) AA : BiloAg~ Ayg
WL = HL-1 - co
INDA MO -0 XV x| x x| x| |e 1100 ED 12 5 2 CtoAg ™ Ay
18 -8-1 10 111 oto] BA 1 8 ¢0) BloAg~ Ayg
“HL - HL-Y 2.] 1%
. Repeat untii Kita =0
|80 .
QUTin), A : (al-A oo X o |X|eid|e 110100 03 |2 3 n ntoAg ~ Ay
. Accto Ag ™~ Ayg
ouTiChse [Q-1 elox|oixje|eleitarioy Ep |2 3 12 CioAg ™~ Ay
o1 ¢ 001 ; . |BtoAg~ Ay
o ,
outi -t | x{gix]Ixix] xj1ie|nionm| e |2 4 16 CioAg~ Ay
|8 ~8-1 , © 110100 61| A3 © {BlaAg~ Ayg
THL = HL+1
oTIR O=-tHo {xjrixtxixt x| 1vie 11100101 e |2 5 b} CloAg~ Ay
8- 8.1 . : 10 110 011 83 KByoH| - Bio Ag~ Aqg
HL — HL+1 : - : 2 ‘ 6
Repat unti T 4 (118 =0
8-0 . .
@
outo -y XX {xix| x| vie 10| 0" |2] 16 |Croag~ay
s-8-1 . , 10 101 011 AB Bio Ag~ Ayg
HL = HL-1 A - :
aTon @-m0 [x|t {xtxix| xj1|enmionin e |2 s n CloAg~ Ay
s-8-1 10 111 011 @88 B UE R] BroAg~ A)g
HL - HL-1 : : 2 4 1 .
Repeat untid -k B0
Te=0 :

wr s

domc (D H the remit of §-1 is zors the Z flag is 3¢, otherwise it is reset.

Flag Notatisn: © = tiay not attectad, O f1ag revet, 1 = flag set, x-‘llqinntm-\'
§ = flag is sifacted accarding te the resait of the operaties.

APPENDIX 3 Page 26

Z80 — CPU INTERRUPT STRUCTURE

MASKABLE (1N

-Flace instrucnon emto Oaws Bez durmg

Mode 1

Restart o 38y or S6yg ('RST 567

Meode 2

Used by 280 Peripherais

[|
Interrupt |
|
Secvice l ;
H i
Routine Low Order !
i
Starting High Order
‘ 1
Address |
1 |
ti !
Tadle H l i
i

VI
HON MASKABLE (WM}

Restart 1o 66y or 10299
INTERRUPT ENABLE/DISASLE FLIP-FLOPS
Actien
CPU Resm
Dt

RETN
Accapt TNT

RETI

INTA = Mi o TORQ lite S090A

; | rogester $bit Vector from
contents Pm;}m;u '

IFFy IFFy

0 0

o 0

1 I.

™ . IFFy = Burity flog

o o IFFy ~ Purity fiag

o Iefy Fhe ~ IFFy
IFFy o IFFy ~ IFFy

¢ 0

L *

APPENDIX 3 Page 27

APPENDIX 4

SPECIFICATIONS MT-80Z

CPU:

780 Micro Processor, 1.79 mhz clock, crystal controlled

RAM:

2K Supplied - expandable on board to 4K

EProm/Rom:

’2K monitor supplied - expandable on board to 8K (with 2K RAM)
4K (with 4K RAM)

6K (with 2K RAM)
Expansion Bus:

STD (Prolog, Moétek) 780 Bus fully buffered
Full DMA with on/board memory and I/0 devices

Paraliel I/0:

2 - 8 bit dip switch input ports
1 dedicated and readdressable through the on board solderless
breadboard
1 uncommitted - can serve as (2) 4 bit input ports or 2 groups
of 4 logic switches

2 - 8 bit LED output ports
1 dedicated and readdressable through the on-board solderless
breadboard, also useable as DATA bus monitor
1 uncommitted, can serve as (2) 4 bit output ports or 2 groups
of logic indicators

On board parallel I/0 expansion with addition of Z-80 Peripheral
Interface Adapter and counter/timer chips (user supplied)

Serial 1/0:
Audio cassette interface, 165 baud data transfer rate

Data & Function Entry:

36 key keypad, 19 function keys, 16 hexadecimal digit keys and
1 user defined key

Readouts & Displays:

6 - 0.5" high 7 segment LED displays for readout of address and
data plus user prompting

2 - sets of 8 LED displays for DATA readout on the two parallel
output ports

APPENDIX 4 Page 1

Hardware Single Step:

Single machine cycle. Run/cycle switch and single step pushbutton
patchable to the WAIT Tine through solderless breadboard interface.

MONITOR:

2K software PROM monitor controls various computer functions such
as system initialization, keyboard and display scanning, cassette
tape read and write. Register and memory select/modify and
display, single step, software break point, memory block transfer
and others. A1l routines are user callable. Automatic software
self test.

Audio:

2.25" speaker and audio drive circuits are provided on board for
user's special application involving digital tones

Breadboarding Facilities:

A1l system bus and control lines are buffered and connected to
a solderiess breadboarding interface socket for easy patching
to the on board SK10 breadboarding socket. Approximately 250ma
of +5V available for breadboarding experiments

Power Supply:

Unit comes with 1 amp 9VDC unregulated wall adaptor which plugs
into on board +5 V regulator; short circuit proof with thermal
shutdown protection

+/- VDC : On board regulators; short circuit proof with
thermal shutdown protection ****(requires optional +/- 15VDC
unregulated adaptor - factory available)

Power Requirements:

Approximately 15 watts

Case:

Polyethelyne blow-molded case with removable locking cover
Size:

11" (27,94 cm) deep x 15" (38,1 cm) wide x 3" (7,62 cm) high
Weight:

Approximately 2 1bs (1 kg)

.

- APPENDIX 4 Page 2 S—

APPENDIX 5

SCHEMATICS

Portions of this information have been reproduced courtesy of:

MULTITECH INDUSTRIAL CORPORATION
977 MIN SHEN E. ROAD

TAIPEI 105 TAIWAN

Republic of China

BEE B IoN) - -.,l!l-.. iy ¥ 'vawum GAZ Y WU ‘(umm i
$ISThe ﬂ "
T
ans ¥ Ao .—
ny el 2 O i
h‘l!Ax!v Hod A8 A a6 1y %]
o 065, g
T
o] F A -0 &
e BIS b e % Sp My o — I
Pt QRIS I z _w. w.! ano
_',, ua o) 62|
CLE]
77}
— 7] e
+ 1 S) L -7} 3| vaor
¥ T e el
wii o Wb v M L o) il
" yi o7 L e g 380 B coJ. 7) - o~
- {7} o L4
O I »>-——{(2)- =
z} s A
‘ 13, 312v
{2 } ijuw
e = {2}
— 4
22 - 2 "IIAMm
7 3 i} 7Y
; 7 : \
7 3 ;.”..ILM,.
£ i R t —
- o o (2
P e >0 a
: RIRHE - 3
FEES v QOCZ ay T ; 2} A
R 2852 vy 2) A
cos® 21L2)
Asun AT Y- I Zun W
2 X }
er G > L0 % : 2) 3
vl ——{(2} o
124 e S ; €@—I{2)
£ 3}
2¢ b F—>—2}
e (2}
Q¢ =7 ¥
- X [&a>—{ 2}
ve e[e [+ i O Lo
71 80T I T .pnm" m it ~
ans 5« . {2} w“ !
ql - i { - B
o J— Z
o] : -
[| hd :hc
EESRAE ann L3 3
4 ”.ch w” x_QL F z““gn
RYETUIN & . z 2
54
S e e e
s av 5 ane o -
. ‘
T o) LR o k2] Ly _w_”‘u
|| d 4 .S,
Ll T T g3 v
- bLSThL seswg L] | SR | MISH #4001
F e d# LT 0007 IR Lix 2n ¢ e 2n ¢ iﬂ
o i 3 7 v
S rg M0 et
Forv - EEET SRR 2 § LAY W G %o i
XTI] Lo 5 Fe [3-] _ _
i PRI S . .]
) TR w3 w e S ZHNBSsS §
SAJe v TN e s s AN
Bode AJNVFe, NIWIMIT DN TDIAIRT w»0- q3ITO 5 ! WIeHNs D
BB W BT PEA ML W4T HT AvAN L' TeNOILas € L0
3o
I | 5 | 4] 3 B] a8 i v

I | H] 5 !

4 i 3 | a | 0] e |
TE AT
a.nuomlwﬂe\t . 3 o b %a s Ure
Moy v T Lvd
 f k) @ M oo TP L L35 s
. ! A
preleriop il il o a5 £ G P
0N T MOH L sa0tv
2ty T L2
£- M
. AN - - - o = svd Sof
.@ ‘@ [
2 g (F 10O o
P AAA L * ® & [
) 4 .@ <
%
- e ta 1a oA - 12 22 22
"V - w % i
L
IR SRR 220
LXIN[AFAS| VIV |ssauanv]| o Ed 2vd
ane AN N - - O!V % P z
Plelloy ./V O:v [[[
210 I kbm.ﬂz ?i.\ww\ VA m | v
e 'Hls?.l. AN~ e N 3 .
2ol o1 ANI0° .O\ [4 | S
P -
2 e £ W) QYO e umJ ng 135 m“ W\
anNe G AN - & * v ove
f%v 'S .@ [.% .% (2)—am |
t {2 v
os |dms| g Lom|e |7 VN I
oil - Ov {2)—dB oV
Ay I e d 3
o {2}
Qs {2)—l Qi
ey - - L3534
S G
£ Mh\ hw] zi mvuuﬂ
3 b ol 5] g I
E{rs 2685 Lol @ £ 1230
e n 1 3dd
1 I 6w~ 1439 .a (e .0
$IaOMIY Q [3 or
20l (z}-a»> °Q
— 5alz7 (2> 50
_ 1652 ow}p ONO ¢
_ 1 v L8d pg (2} O
| 3F ve 28d 3 .
. 32 oy w2 S8d £0he {r}-a» &0
A 7150 96 92 % 5 rod 20} (D) 20
5 e
2 Ao ® 10k 1 > ia
oohrrt= ottt —ar-a» oa
WLD { R
an, H _NW&&
b wM& " i
52 o
” 18d R e i
Seog oz 0 ced
0 5528

Page 2

LT el o
1S WOG o S S 1Y

T4 -OBF DO0UE

ano
5j
ane .x««mi!l‘nAme\xo b~ 2d
e Zalfz UlE-2a
xmtlllllmml_“uw £¥-2¢
& - 1oL 9% - Zat
IR Zijen! ICHNED s Oy IV R- At
03t £2 £ 00LII7 S€ - 2d
" %m!.!l\ll oMA/AY IE- 24
Ord o/ OONA U — N .@4’!& L5y
’ e -2 I u26€-2d
S) A ECERED 131 UD6E
F a A
A]] I o
ai-72d 03101t 75 O3 v [%] [w}-]) 1wy
gi-2d4 AQXH et L 5750 ouol b5 e
L-zagse —iaisg T3 A
g-2d AQ¥Y Il i LR
Ft-2d 247 mesy ! 271997210525
z (¥4
g2-2d L8 el be a
L2-22 s o LI e - - $
{
92-2d 58e SE[FE =RE oF ()OO
(
sZ~2d vec EIvE aHfss (2l QX
b2-2d 94 orled el e -
£2-24 28d £7128 E2d oy o I ol
22-2d 18 7519 sl (2 IV
12-24 [eE] T7jod TISVEy {2—_ OV
L-2d 3 By 4 L0 {2y (O
g-2d W el Gy 72CH — 2@ 20
&~24 A1} sv c_:mQ r {z) @ SO
ol-2¢ PVt ro7i [¢ oo ~(2-qm +0
21-24 g Slev ol (> €J
£ -24 wy —————ley 20 {2 70 .
- [—— {z iQ
¥ -2d it i iv 1a 57 TN
G1-2d Vf i ow 00t {2y 00
g
5
1 I w I T I 3 T) T a T 3 I)

S S— _ o _ 4 | 3 a _ g *
TP s
iy ,J&N -, 2w,
s Wigm, \rraw -1 i (R
oz v
woR toad) Qgr ANSpaxXF Ko P G PR) 5] 4 1¥H
. (e 2 [
#1013 seu e 18 stms (0 gy IR 77| Lol
GALIBOM) e 440 EL R 18 Y AHT &
Qutiny b2} Wt 5 QI:INAJJA €7
LATIYCAT S d A‘ 1
359 Lt al»m.lIJJD.Z
ol A) 1200 B I I A
2 A “
pie <xite D-
i [ITRY o -
QAL b jok- WYL ,.Y. QAL |-
e
2vSHE MM. .xib.m.!ﬁ—W,.'!lllw wsog
Draivr b2 fagd ANy e
wu30g MM.. ousNe ﬂ. wusrd s avg Ry
7 = e ano xoy
£ 73 N ST CTaggs s l2
All 5 2+ [=1=1
A= Hiw T i A sl
- At Xt Z] A xow
353 L3S AW 3532 §o - f A3 a0
" et ﬂ-Mm,.wW|S Iﬂ:m 2h L T
A ;t..nl\v“H Ty
A2 Q2tsr QA fpri2 e u
s AL AN et 2 el uan
A 1S LS Fiakia - _Sravys
vk PEL] U;IHLNT‘O;IJ [ANET-FE)-]
124
Q@ <
F Na anD v
IRk T ATl & anN9
e 045, LLd jeo
4 [
RN 5
5
2V r 4 2y .l..ZTﬁ v 4
Z > [k4l 44
L[7 R w=; ER L [Zta— L w\\ Nu 2y
S V= S v \n.”\vﬂl:v’l‘.! sty s M‘vl\(
£ T i 3 £ vl 3% ar
4 e 134 & S e by (2 ny M n_ ny
SV e SV]55 2 Pty <e— 5v 5 =1 5"
- E 1
>IN OND
biv g I B 2 tiant = N Wy vy
Sy 5= svHs ey b—{1— d eV ZL = o
orv L 0 v Fg—e e o v e 2} gt~ orv . SEl oy -
BvI=S v s gyl —d— O oy 9k “or
Nﬂ =% av b o 37 o1] 1 2w 4 3
'8 res b ? — , £
%3 7 IN 7 37l ?)-—t 14 5 T 34
= 54
2
) F=- OND
QAL F RAS e e— v oug: by 7 - 3 g g x| 19
WA LN Fin b Ay d e e . N Py o o
fvizs Fvbg——— | H Ty - N 24 2 bl
PYIE TVEY v e —a-_— 2v .M 131 M
v e - 1 o e wio—a—| o v = o
oY ob 7 O oSy {7)—- \U o kL %w o
I Ty
: - , (e
CE T L E L o L) -—>— e tq
& gp ce | T e | ol £ 50
e e - NENS . g o 3
2 - i -~ (4 ¥ (8 »a m 0
B o b ’
kg e P DA £c fded SN 2

T T e e 1 a0 0 g
)

|

@->001 62 2.
- v
- 55
o as
(SyoLIvOow D07/ 5 1! A
2 umod e ey N
_ I s
— vy
_ d VAzd Siby S
Lo Qo anG ant
‘‘‘‘‘‘ 438 .
4 b 117}l ~(7)a_~ of
n .
R ey ..
0 . §s g
B -
n Rl
(3%
i "Xl {2l it
3
§+
HOO
L
Gres V74t 'Q1400 |l
El ? ” k4
§Fno1IAME o071} NI 9 po T 7 L5 |
7 L1¥od E il K El Nma 24400574 g 7 Al W 2 P9 o8k
-
fE=ats : e N e ML T
2
D’ umm .: 25 Q™ il _A “.: =17 N b {7 — 02
.liinw“ I S5 s WL Ry QA. x4 e {2yl 'V
12 N NS AN N RS SO R X 7) 3
7 "1 > 5 ! - aanls S 5 £t i {2)—a v
) W W W W W . = 5 'wﬁ.i =
- 0% s AT
' [Y
[N AR AN A S, (] o
£y By ™MOr pivt
5+ ano
Q3L ena3a SNE) QYT B
Poadod e BT F
D ert> m..v ?|
[& p: Wl % s T
Qrtd = P - P - o Lo
[2 iRy viayﬂmu o it o R = I - g N
| o el et 5 - 5 FATEIR AT S
B o5 [S S ST U S . 19%% bL
1o r Aﬂ L > > Aﬂ > ! N - "
] x?. < w w W W w i ar g sl 12 PRISNE
va01 | _ o
e - — - e]
' = a
“’Hlll - OVI Q.é'!! &0 8 :, Ty A—_—
ano 4} T L S e
72030 SOR 4 ! ! ! | 2 on g
I dlend L § () t t T ,
<7 X | ! (7> L]
) e ANt {32)- <> 20
.\n\\ = gy i t ' i {s} <a
¢——=-(a) i L $AAN—L - {4}~ a
“v).a ! ! i “ CT ca
¢ AN {2 2Qq
“\Mra M | “ ._ e 2> iq
- AAA {7+ 00
P 1 ¥ |
L~ ! AAA~L X :
\\\G P 1 1 H i
@ 4 1 ANt
e b bt
e At
T H T 5 T 3 T 3 T a T) T g T v

I H 9 4 | a J g v
- m.._...Mmcu'.u. LI | DIP | .)
grﬂD\\Q Naﬁ%quwwn\ﬁx\%ﬂr«o T4 < 1138
Xo o wme
Fraans ¥amal) Q@ NOJSH 2 £ o !
) . /SVYaX? XQf aND —g — o o
BIPR0 IDAGNIC e i% 1SWI4 (9 “
GIIYBOSHOIN SININNNLEN 17D qll p— ‘Hl —— —— - ||—
| 1
] | I 2
ARIm —O H IV T zi6L g LA \V
| €oob NI |
20
470l T,
‘
g ILIAM 4
€2 - —|——-——
7ol T “. 1
] _
Azl+ —O EGRL-I 218L
| €004 NI |
| I .
ANY ||% . 2 . L
oA
R-F
v sGe NI S0
ANVl L .E.,m L 9 4 gL
401 F gror v 4”00 R mlo.gﬂ ot
1HM
re= T
! 1
[8
ASt —O 0 * < * r&ﬂlr soa, [THI T, AG+
a4 NIy ol ”v |h asa Nivw 2
L _
u:%fizlx& NOl1dlUB$3a _ was

SNOIS)I AZIY

I

—
-
e
g
—
e
—

Page 6

APPENDIX 6
MEMORY EXPANSION - External

The MT-80Z memory system can be expanded externally to 64k
by using STD memory cards. In general, expanded external memory
can be prom, static ram or dynamic ram. However, there are some
things to consider before attempting to add memory on the MT-80Z.

1) Make sure that you have enough power to supply the external
memory : There is approximately 250 ma of breadboarding power
available from the MT-80Z power supply

2) Make sure that the external memory map isn't in conflict
with the internal memory map

3) There are two types of dynamic ram cards available these
days: those that depend upon the Z80 for refresh operation and
those that don't. Both will work provided that you don't exceed
their speed criteria relative to the clock rate of the MT-80Z with
one exception. Dynamic ram cards that do depend on the Z80 refresh
and address lines to refresh their ram will LOOSE their DATA if
you attempt to use the hardware single step option of the MT-80Z.
Inevitably the refresh Tine will be held high during single step
operation and the address lines will not be chinging which precludes
using this type of dynamic ram card. Only those cards that have an
on board refresh signal generator will work during single step
operation

Portions of this information have been reproduced courtesy of:

MULTITECH INDUSTRIAL CORPORATION
977 MIN SHEN E. ROAD

TAIPEI 105 TAIWAN

Republic of China

APPENDIX 6 Page 1

MEMORY EXPANSION/CONVERSION - Internal

The MT-80Z on board memory can be expanded to several configurations.
Some of these configurations require that the PC board be removed
from the case to perform a cut and patch modification. The various
configurations are listed below.

[2532 EXPANSION |

U6 - Expands from 2K prom to 4k prom
/ a)Replace 2716 with 2532

b)No cut and patch necessary MEMORY MAP
U7 - Expands from 2k prom to 4k prom
a)Replace 2716 prom with 2532 prom : 0000
b)No cut and patch necessary EPROM
: 0 TFF 2516 U6
U8 - Not expandable 2532 o800 ===
(2532)
2732 EXPANSION ggzz ;>/ N
U6 - Not expandable to type 2732 1800 //f;/'sz
U7 - - Expands from 2k prom to 4k prom Rt
a)Replace 2716 with 2732 \FFF | 6116 U8~
b)Cut J1-1,2) 2000
Cut J1-3,4 ' .
Cut J1-5,6 EPROM U7
¢)Patch J1-2,3 2516, 2716
Patch J1-4,5 | RAM 6116
Patch J1-6,7 27FF
) 2800 p————————
U8 Not expandable to type 2732 :
(2532,2732)
2FFF 77 7
PROM_TO_RAM CONVERSION | ;y{;//;//f://
% 4222

U6 Not convertable to type 6116

U7 - Converts frem 2k prom to 2k ram
~ a)Replace prom with 6116
b)Cut J1-3,4 .
c)Patch J1-4,5

U8 No conversion necessary

APPENDIX 6 Page 2

MT-80Z DISPLAY

The display of the MT-80Z is composed of six individual seven
segment displays. The information presented on these displays is
multiplexed by the software of the monitor program via output port
Ul4 (see sheet 2 of schematics).

The individual displays are controlled by 14 signals (PCO thru
PC5) and (PBO thru PB7). Six of these signals (PCO thru PC5) deter-
mine which one of the six displays will be active while the remaining
8 signals, (PBO thru PB7), define the individual segments and decimal
points which will be iiluminated.

Users can present their own information on the displays as follows:

The information patterns are defined by the user in a "buffer"”
zone in memory and then the user calls a subroutine in the monitor
program. The monitor subroutine will distribute the user information
on the displays and return.

- Because the displays are multiplexed by the software it is
necessary for the user to write a loop program which continues to call
the monitor subroutine in order to maintain the information on the
displays. If the user dosen't maintain the loop the information on
the displays will collaspse. ‘

The location of the display buffer is somewhat arbitrary and can
be defined by the user by setting the IX register of the Z80 to that
section of memory where the programmer (user) wants to allocate space
for the message. The following example demonstrates how to display
messages using the monitor subroutines.

HOW TO DISPLAY A MESSAGE
-General Method -

1) Pick a convenient point in memory as a "buffer" for your message

2) Using the following example and table as a guide, store the
necessary codes for your message in the "buffer" zone

3) Write a loop which calls the monitor subroutine continuously until
some detectable event occurs (i.e. interrupt, keystroke etc..)

4) Upon detection of the event, take the appropriate action but bear
in mind that the DISPLAYS WILL COLLAPSE once you leave the monitor
subroutine

5) There are two subroutines which can be used to handle the display
SCAN and SCAN1. The differences in these routines are explained
in the following pages :

APPENDIX 7 Page 2

APPENDIX 7

KEYBOARD AND DISPLAY

The following information is provided to help you:
1) Understand how the MT-80Z display works
2) Understand how the MT-80Z interprets the keyboard

3) Understand how to use the monitor subroutines to control the

display and interpret the keyboard for your own purposes

Portions of this information have been reproduced courtesy of:

MULTITECH INDUSTRIAL CORPORATION
977 MIN SHEN E. ROAD

TAIPEI 105 TAIWAN

Republic of China

APPENDIX 7 Page 1

SCAN1
[Address]: 0624

Function]: Scan keyboard and the display 1 cycle from right to left.
Execution time is about 10ms (9.97ms exactly).-—

[Input]): IX points to the display buffer.
[Outputf: (1) If no key-in, theun carry flag = 1.
(2) If key-in, carry flag = 0 and the position-code of the
key is stored in register A.
[Supplement]: (1) 6 bytes are required for 6 LED's.

(2) IX points to the rightmost LED, IX+5 points to
the left most LED.

the right LED

IXe

the left LED

(3) See Fig. 3-11-4 for the relation between‘eacb
- bit and the seven segments.

SCAN
[Address]): OSFE
[Function]: Similar to SCAN1 except:
(1) SCAN1 scans one cycle, but SCAN will scan till
& new key-in.

(2) SCAN1 returns the position while SCAN returns the
internal code of the key pressed.

[Input]: IX points to the display buffer.
[Output]: Register A contains the internal code of the key pressed.

[Register]: Destroy AF,B, HL, AF', BC', DE'.

APPENDIX 7 Page 3

EXAMPLE : Display HELPUS , HALT when Step 185 pressed.

1 DISPLAY 'HELPUS' UNTIL KEY-STEP PUSHED:
1800 2 ORG 1800H
1800 DD212018 3 LD IX, HELP
‘1804 CLFEGS 4 DISP ~ CALL SCAN
1807 FE13 5 CPp 13H ;KEY-STEP
1809 20F9% 6 JR NZ ,DISP
180B 76 7 HALT
8 ;
1820 9 ORG 1820H
1820 AE 10 HELP DEFB QOAEH ; 'S!
1821 BS 11 DEFB OBSH ; 'ut
1822 1F 12 DEFL 01FH ; 'P!
1823 85 13 DEFB 085H ; 'L!
1824 8F 14 DEFB O8FH ; 'E!
1825 37 15 DEFB 037H ; 'HY
16 ;
17 SCAN EQU O5FEH
18 END

Details of the display buffer are given below:
a
.
f‘r ‘yb

el::?f“ 7i6lslal3l2]|1}o0
d P

d p ¢ b a f g e

Display Segment of
Position Format Illupination |d pc b a'f g e |Data Addr
- a,c,d,f,g, (10101110 |AE | 1820
Right I b,c,d,e,f, |1 0110101 | B5 1821
- a,b,e,f,g, (00011111]| 1F 1822
| d,e,f, 10000101 | 8 | 1823
= a,d,e,f,g, |1 0001111 |8 | 1824
Left }{‘ b,c,e,f,g, 00110111} 37 1825

CODE ED 2@ 9B BA 36 AE AF 3B BF BE 3F A7 80 83

DATA01.23456TB9ABCD
£789ARbCd

CO0E 8F @F aAD 37 ©89 &1L &7 85 2B 23 A3 IF 3E @3

c2
My
()
L
LN

OISP

o

P Q R

alP 9r

DATA E F G M I J K L ™ N
DISP E F

CODE AL B7 BS BT A9 @7 B& BA B3 A2 32 @2 Co @3

O
X
i
C.
-
—
Ji
3

OATA

m
-
(o4
<
S
»
<
~N

Y + -

e S EUHOFY- cod -

MT-80Z KEYBOARD

The MT-80Z keyboard is composed of 36 keys arranged in a
6 by 6 matrix. The matrix is "scanned" by the software of the
monitor routines via I/0 port Ul4 (see sheet 2 of schematicss)

The individual keys are software driven by I/0 pert Ul4
bits (PCO thru PC5). Closure is detected through software
by analyzing I1/0 port Ul4 bits (PAO thru PA5). Debouncing is
also accomplished through software. And finally, an identification
code is assigned to each key by software, and placed in the
"A" register of the Z80 for appropriate response by other
programs. Users can interpret the keyboard for their own
purposes by CALLing one of the two keyboard subroutines
SCAN1 or SCAN . An explanation of the two routines and examples
of their use is given in the following pages.

Please notice that both routines SCAN1 and SCAN will effect
the displays ! '

- . APPENDIX 7 Page 5

SCAN1
[{Address]): 0624

Functior]: Scan keyboard and the display 1 cycle from right to ieft.
Execution time is about 10ms (9.97ms exactly).

[Input]: IX points to the display buffer.
[Output]: (1) If no key-in, then carry flag = 1.
(2) If key-in, carry flag = 0 and the position-code of the
key is stored in register A.
{Supplement]: (1) 6 bytes are required for 6 LED's.

(2) IX points to the rightmost LED, IX+5 points to
the left most LED.

the right LED

IX

the left LED

SCAN
[Address]: O5FE
[Function]: Similar to SCAN1 except:
(1) SBCAN1 scans one cycle, but SCAN will scan till
a new key=-in.
.(2) BCAN1 returns the position while SCAN returns the
internal code of the key pressed.
{Input]: IX points to the display buffer.
{Outpwt]: Register A contains the internal code of {the key pressed.

[Register]: Destroy AF,B, HL, AF', BC', DE'.

—— APPENDIX 7 Page 6 - L

EXAMPLE

1800
1800
1804
1807
1804
180D

1900
1900
1901
1902
1903
1904
1905

: Display the key code of the key pressed.

DD210019
CDFEOS5
210019
CD7806
18F5

00
00
00
00
00
00

WO~ U ib WM

;DISPLAY INTERNAL CODE

LOOP

OUTBF

SCAN
HEX7.SG

ORG 1800H
LD IX,OUTBF
CALL SCAN

LD HL, OUTBF
CALL HEX7SG
JR LOOP

ORG 1900H
DEFB 0

DEFB 0

DEFB - 0

DEFB 0

DEFB 0

DEFB 0

EQU OSFEH

QU 0678H
END

¥hen a key is pressed, the internal code of it is displayed on
the data filed.

The user may compare it with Figs 2~11-5.

1f you want to display the position code of the keys, you may
change the program as follow:

1800
1800
1800
-1807
1809
180C
180F

DD210018
CD2406
38FB
210019
CD7806
18F3

WO WN -

;DISPLAY

LOOP

POSITION CODE

ORG 1800H
LD IX,OUTBF
CALL SCAN1

JR . C,L00P
LD HL, OUTBF
CALL HEX7SG

JR LOOP

APPENDIX & page 7

Position-Code (CALL SCAN1):

FUNCTION

peassrasesmmemmt DA TA/REGISTER

AF BC DE HL

(oo | {o1] fo2] [o03]

d DE’ HL’

AF’ BC

[o6] |o7]

Los |

04]

IX 1Y SP I-IF

[os] [09] [oA] [oB]

r

SZ-H PNC SZ-H -PNC’

[oc] [op] [oE] [OF]

ADDR DATA PREV

NEXT

o] [a] [d]

L 10]

RELA INSERT DELETE

COPY

(0] [s] [7]

Lic]

SET CLR

BRK PT BRK PT LOAD

DUMP

[GF]

[1E]

FLAGS——_——ﬁ j

AR

PC STEP

REG

GO

08l | Gl

L12]

L13]

Internal-Code (CALL SCAN):

FUNCTION

puusmTETTEEeTRENS [ATA/REGISTER -

AF BC DE

122] [IE]

HL
L1e]

ADDR DATA PREV

[1s] [oF] [o9]

/

DE HL’

RELA INSERT DELETE

el s8] [1A]

t14] | OE] {08]

1y SP i-IF

LOAD

SET CLR
BRK PT BRK PT

{10] {1F | { 20]

{13] |oD] 1o7]

‘PNC SZ-H’

FLAGS—————-—I

-PNC’

REG STEP

PC

el

L1e] = [21]

2] | loc] |os]

APPENDIX 7 Pace 8

intg!

Reproduced Courtesy of

INTEL CORP.

8255A/8255A-5

PROGRAMMABLE PERIPHERAL INTERFACE

/
u’'MCS-85™ Compatible 8255A-5

= 24 Programmable /O Pins

= Completely TTL Compatible
m Fully Compatible with Intel® Micro-

processor Families

» Improved Timing Characteristics

s Direct Bit Set/Reset Capability Easing
Control Application interface

m 40-Pin Dual In-Line Package
» Reduces System Package Count

u Improved DC Driving Capability

The Intel® 8255A is a general purpose programmable /O device designed for use with intei® microprocessors. It has
24110 pins which may be individually programmed in 2 groups of 12 and used in 3 major modes of operation. In the first
mode (MODE 0), each group of 12 1/O pins may be programmed in sets of 4 to be input or output. iIn MODE 1, the second
mode, each group may be programmed to have 8 lines of input or output. Of the remaining 4 pins, 3 are used for hand-
shaking and interrupt control signais. The third mode of operation (MODE 2) is a bidirectional bus mode which uses 8
lines for a bidirectional bus, and 5 lines, borrowing one from the other group, for handshaking.

PIN CONFIGURATION

7S 1n 3] S 0 ras
[I¥3a b »| T eas
a3 [eas
*as e Fmag 7%
#]s %[wR
P=3 s »{" neser
e a b u{C o,
ar’ls 3o,
as "]y 12{30,
e nfSo,
[Ju L] 8255A »{" o,
res {J12h =" o,
rcaln »" o,
o] w7 g,
L 1Iwil) 2|2 Ve
vc2 {6 [ey
L=1u it 207 rme
o 3]} ves
[10w 1] 207 rma
il n[res
PIN NAMES
Oy~0y DATA BUS {BI-DIRECTIONAL}
RESET RESET INPUT
S CHiP SELECT
L) READ INPUT
wh WRITE INPUT
AD, AY PORT ADDRESS
PAT-PAD PORT A (BIT)
PR7-FR0 PORT B (BIT!
PCIHC0 PORY C {BIT)
_& *§ VOLTS
GNO # VOLTS

8255A BLOCK blAGRAM

omia - g
s .
et AL /.._._..._” \ s
PO PN P s e
e »
eontmi | -
e
.
St T |~ e
K= Toete \(""““‘1.> oo
. -y
BLOIRITTIONAL DATA RS ,
tata
a.n‘<: > e & ™
anrin |V v
e
NI
rery ey
| J———
aLaos
PR—
. Loy e
cOnTAOL <:
., Vs contany
*
L3
o}

APPENDIX 7 Page 9

8255A/8255A-5

8255A FUNCTIONAL DESCRIPTION

General

The 8255A is a programmable peripheral interface (PP
device designed for use in Intel®* microcomputer
systems. Its function is that of a general purpose /O
component to intertace peripheral equipment tQ the
microcomputer system bus. The functional configura-
tion of the 8255A is programmed by the system software
so that normally no external iogic is necessary to inter-
face peripneral aevices or structures.

Data Bus Bufter

This 3-state bidirectional 8-bit bulfer is used to interface
the 8255A to the system gata bus. Data is transmitied or
received by the buffer upon execution of input or output
instructions by the CPU. Control words and status infor-
mation are aiso transterred through the data bus buffer.

Read/Write and Control Logic

The function of this biock is to manage all of the internal
.and external transfers of both Data and Control or Status
- words. It accepts inputs from the CPU Address and Con-

trol busses and in turn, issues commands to both of the

Control Groups. ’

(€s)
Chip Select. A “low” on this input pin enables the com-
Mmuniction between the 8255A and the CPU.

-

(RD)
Read. A “low" on this input pin enables the 8255A to
send the data or status information to the CPU on the

data bus. In essence, it allows the CPU to "read from"”
the B255A.

(WR)
Write. A “low™ on this input pin enabies the CPU to write
data or control words into the B255A.

(Ap and A,)

Port Select 0 and Port Select 1. These input signals, in
conjunction with the RD and WR inputs. control the
selection of one of the three ports or the control wora
registers. They are normally connected to the least
significant biis ot the address bus (Ag and A,)

8255A BASIC OPERATION

Ay | Ag| RD | WR | CS 1 INPUT OPERATION (READ!

) 0] 1 0 . PORT A= DATABUS

0 1 1] 1 0 i PORT B = DATA BUS

1 0 0 1 0 | PORT C= DATA BUS
OUTPUT OPERATION
{WRITE)

0 0 1 0 0 | DATA BUS=~PORT A

0 1 1 0 0 | DATABUS-PORTB

1 0 1 0 0 | DATABUS=PORTC

1 1 1 0 0 | DATABUS = CONTROL
DISABLE FUNCTION

X X X 1 “ATA BUS = 3-STATE
1 1 0 1 0 | ILLEGAL CONDITION
X X 1 1 0 | DATA BUS= 3-STATE

PR It

o) o

I
Jui? RN '>-f‘«* k ey -l"ul,)«-a:- PR I B TOETRY,

Ty

o e

7% 'ﬁmm ik s

quun 1. IZSSA Block Dugum Shouinq Data Bus Buffer and Read/Write Control Logic Functions

APPENDIX 7 Page 10 ' e

8255A/8255A-5

8255A OPERATIONAL DESCRIPTION
Mode Selection

There are three basic modes of operation that can be select-
ed by the system software:

Mode 0 — Basic Input/Output
Mode 1 — Strobed Input/Qutput
Mode 2 — Bi-Directional Bus

When the reset input goes “high" all ports wili be set to
the input mode (i.e., ali 24 lines will be in the high im-
pedance state). After the reset is removed the 8255A can
remain in the input mode with no additional initialization
required. During the execution of the system program
any of the other modes may be selected using a single
output instruction. This allows a single 8255A to service
a variety of peripheral devices with a simple software
maintenance routine.

e,

The modes for Port A and Port B can be separately defined,
while Port C is divided into two portions as required by the
Port A and Port B definitions. All of the output registers, in-
cluding the status flip-flops, will be reset whenever the
mode is changed. Modes may be combined so that their
functional definition can be 'tailored” to almost any /O
structure. For instance; Group B can be programmed in
Mode 0 to monitor simple switch closings or display compu-
tational results, Group A could be programmed in Mode 1
to monitor a keyboard or tape reader on an interrupt-driven
basis.

{ ADDRESS 8US }

{ CONTROL BUS]

{ OATA BUS : }
!

D, -Dg Ag-A,

8255A pa

[
ey

A
HO 410 8| HD

PC,PC, PC,PC, PA;PA,

[~
e A

T 1 L 3

P8P8, CONTROL CONTROL PA,-PAy

MODE1 —=] 8

OR i/0 OR 11O
MopE2 —L_ 8 c———&:—:—-——. A T
(5] I I t I l I 1 I !iﬂl»D!RECTIONAL
P8, P8y 10 PA, PAy

CONTROL

Figure 3. Basic Mode Definitions and Bus Interface

CONTROL WORD

By | Pa | 05 | Dy | D | B, 1 Dy | By

L

GROUP 8

PORT C (LOWER)
1= INPUT
0= QUYPUT

PORT B
1 INPUT
0= QUTPUT

MODE SELECTION
0 MODEQ
1= MODE Y

GROUP A

PORT CIUPPER
1= INPUT
0= QUTRUT

PORT A
1=INPUT
0= QUTPUT

MODE SELECTION
00 = MODE O
. 01 = MODE 1
1X = MODE 2

MODE SET FLAG
1= ACTIVE

Figure 4. Mode Detinition Format

The mode definitions and possible mode combinations
may seem confusing at first but after a cursory review of
the complete device operation a simple, logical /O ap-
proach will surface. The design of the 8255A has taken
into account things such as efficient PC board layout,
control signal definition vs PC layout and complete
functional flexibility to support aimost any peripheral
device with no external logic. Such design represents
the maximum use of the available pins.

Single Bit Set/Reset Feature

Any of the eight bits of Port C can be Set or Reset using a
single OUTput instruction. This feature reduces software
requirements in Control-based applications.

. APPENDIX 7 Page 11

8255A/8255A-5

CONTROL WORD

o, Dg | Oy | Dy | Dy D

i’

B8IT SET/RESET
1= SET
0~ RESET

x x x

DONT
CARE

BT SELECT
Al I,
D 234slelT
010 110:1,0;1!Bg
00 1.1.0,001:18
et
0.0 0.0{111,1,1:8y

81T SET/RESET FLAG
G =ACTIVE

Figure 5. Bit Set/Resel Format

When Port C is being used as status/control for Port Aor B,
these bits can be set or reset by using the Bit Set/Reset op-
eration just as if they were data output ports.

Interrupt Control Functions

When the B255A is programmed to operate in mode 1 or
mode 2, control signals are previded that can be used as
interrupt request inputs to the CPU. The interrupt re-
quest signals, generated from port C. can be inhibited or
enabled by setting or resetting the associated INTE tlip-
flop, using the bit set/reset function of port C.

This function allows the Programmer to disaliow or allow a
specific 1/O device to interrupt the CPU without affecting
any other device in the interrupt structure.

INTE flip-flop definition:

{BIT-SET) — INTE is SET — Interrupt enable
(BIT-RESET) — INTE is RESET — Interrupt disable

Note: All Mask flip-flops are automatically reset during
mode selection and device Reset.

Operating Médes

Mode 0 Basic Functional Definitions:
& Two 8-bit ports and two 4-bit ports.

® Any port can be input or output.
MODE 0 (Basic inpu¥Output). This functional configura- ¢ Outputs are latched.
tion provides simpie input and output operations for ® Inputs are not latched.
each of the three ports. No “handshaking” is required, ® 16 ditferent Input/Output configurations are possible
data is simply written to or read from a specified port. in this Mode.
l ‘RR []
RD Z:
N 7/
i —— -—-—'«n‘—og
INPUT d ;X
tar e \“-—————‘i
« X X
€S, A1, AD
|
0y By e e —— o e e — —-{ X »——-
tap ; ‘or d
MODE 0 (Basic lnput)
wh AV /
N /
e tow typ et
X }C
i—— taw ‘wa
ana” X X
ouTruT

e Yy

MODE 0 (Basic Output)

APPENDIX 7 Page 12

8255A/8255A-5

MODE 0 Port Definition

A B GROUP A GROUP B
; Dy | D3| Dy | Do | PORTA PORT C s | PORTB PORT C
{UPPER) {LOWER)
0 o | ol o | outpur | ouTtPuT | 0 | OUTPUT | OUTPUT
0 0 0 1 | OUTPUT | OUTPUT | 1 | OUTPUT | INPUT
0 0 1 0 | OUTPUT | OUTPUT | 2 | INPUT | QUTPUT
¥ 0 1 1 | OUTPUT | OUTPUT | 3 | INPUT | INPUT
0 1 0 | 0 | OUTPUT ' INPUT ! & | OuTPUT | OUTPUT
0 1 0 1T | OUTPUT . INPUT | 5 | OUTPUT i INPUT
0 1 1 0 | OUTPUT INPUT | 6 | INPUT | OUTPUT
[1 T 1 1 f OUTPUT . INPUT °© 7 | INPUT | INPUT
1 0 1 0 ! O | INPUT t OUTPUT ; B8 | OUTPUT | OUTPUT
,,,,,,,,,,,, Pk 0 | 0 ; 1 ! INPUT { OUTPUT : 9 | OUTPUT | INPUT
1 4] 1} 0 | INPUT | QUTPUT - 10 | INPUT | ouTPUT
1 0 71 1§ INPUT 1§ OUTPUT ! 11 | INPUT ! INPUT
1 1 0 1 0 | INPUT | INPUT 12 | OUTPUT | QUTPUT
1 1 0 1 1 | INPUT 1 INPUT | 13 | QUTPUT . INPUT
1 1 1 0 | INPUT | INPUT | 14 | INPUT | OUTPUT
1 IR 1 T INPUT | INPUT [15 | INPUT ' INPUT
MODE 0 Configurations .
CONTROL WORD #0 CONTROL WORD #2
b, Dy By D, Oy D, D, O D, D, Dy D, Dy Dy Dy Do
CT- o1] [Tl Te oo]
Py At
2554 B255A
e 7, PG et
D, D e c{) Dy-Dy *———e— c{ .
s 1y r, e P02,
st rey e, 8 re,
CONTROL WORD #1 CONTROL WORD ,2
B, D, By P, 8y D Dy B 8, Dy Oy O, B, B, D, B
CLeTelelefelel] [TeTeleledel 1]
——e ——— At ray e, . JY SUVSSS NN
SRSSA [)
- - - - - .- :. ey - P Jo——— ‘0 e, o,
By By ettt 'C{ - - Dy Dy et C‘[
oyt 152, i p—rt— ey
) s ool

'APPENDIX 7 Page 13

8255A/8255A-5

CONTROL WORD =4

CONTROL WORD =8

APPENDIX 7 Page. 14

D, By Dy D, D, D, D, D, D, Dy ©y ©, O; D, O, D,
T 1] 1 ! T 1
[viololo 1iolo{o] [1[o[o§|io;ogozn
H i . i i I
Al b, ra, ale—rd o para,
8255A 8255A
ro—-——-,i‘——vc,vc, r el N
b, D, c - 0,0, ¢ {
-t PGy PCy — PCy PGy
] 8
B [P8, P8, 8 p———r——e 98, P3,
CONTROL WORD =5 CONTROL WORD =9
D, D Dy D, D, D, D, D, o, o, O, ©O, D, D, D, D,
[lln{nlolllu[oixl [\Io@o‘1%n]o;nis]
A——-/—B—-—-’FA,-PAO AQ———-—fi— Pa, PAy
82554 82554
rc—/—‘——-—-pc_'pc. L e
L. % ci 0, Dy €
#2 PCy Py Lot ecywe,
Bt ru, 05, Byt 08,05,
CONTROL WORD =6 CONTROL WORD =10
D, Dy Og D, D; O, O, D, o, D, Dy D, Dy D, D, D,
i T T
leolo]olt{o‘1?o] [\]olo!x’o)oi‘éu
! S [
Py T YW A bt P, pa,
8255A 8255A
R A [At rc,pc,
0,0, c«{: 0,0, c-i
&
—-——;L—.PC_\PCD L__..)L__.pc,pco
8
8 [t 5, P8, 8 f——r— b8, 78,
CONTROL WORD #7 CONTROL WORD #11
O, Dy Dy D, Dy D, D; G O, By by D, Dy D, D, D,
Llefefel fof] Llefel fefel]
Py - T Al A ra,
S238A S255A
fo—rtt— e, 0c, LY
0,0, c«{: 0,0, c{
A .
f——f—— ;¢ ot ey
[[
8 o PB, P, 8 fo———rf— 13, bg,

8255A/8255A-5

CONTROL WORD =12
0, o O, b, D; B, D D

i ; i i
vie oyl 000
R SRS |

'y o——-—-—JB—— Pa, Pa,

$255A
a
e 0C, PC,

D, D e c

ST

L.—-——/—‘———-QPCPC
37 e

S S, .
8 - P8, P8,

CONTROL WORD =14
0, Dg D, O, Oy D, B, Dy
i i “
vielo-ryr eitio
" 1 . . i

A »4————7/—-!——-— rA, pAv
S S K
7 PC, PC,
D, D e 4
— it e, C,

8 fomrgfm— #8,.PB,

CONTROL WORD =13 CONTROL WORD =15
D, D Dy Oy Dy D O, Dy 0, by Dy O, DOy D Dy O

Clelem el]

A ‘.-—,—'-’——— PA,PA, A p—-——%‘——- PA,PA,
. 82554 82554
b r ’_—'/_"— rC,-PC, r"——/':“— pC, P,
8,0, ¢ ‘L . Oy0y c { .
o #C 9T, o PC3 75,
s, o rars,

Mode 1 Basic Functional Definitions:

® Two Groups {Group A and Group B)
@ Each group contains one B-bit data port and one 4-bit
control/data port.

Operating Modes

MODE 1 (Strobed input/Output). This functional con-
tiguration provides a means tor transterring 1/O data to
or from a specified port in conjunction with strobes or ® The 8-bit data port can be either input or output.
“handshaking” signals. in mode 1, port A and Port B use Both inputs and outputs are latched.

the lines on port C to genarate or accept these ““hand- ® The 4-bit port is used for control and status of the
shaking” signals. 8-bit data port.

APPENDIX 7 Page 15

8255A/8255A-5

Output Control Signal Definition

OBF (Output Butfer Full F/F). The OBF output will go
“low” to indicate that the CPU has written data out to
the specified port. The OBF F/F wili be set by the rising
edge of the WR input and reset by ACK Input being low.

ACK (Acknowledge Input). A “low" on this input informs
the 8255A that the data from port A or port B has been ac-
cepted. in essence, a response from the peripheral
device indicating that it has received the data output by
the CPU. ’

INTR {interrupt Reques?). A *'high” on this output can be
used to interrupt the CPU when an output device has ac-
cepted data transmitted by the CPU. INTR is set when
ACKisa"'one", OBFisa"one andINTEisa‘*one . ltis
reset by the falling edge of WR.

INTE A
Controlied by bit set/reset of PCyg.
INTE B
Controlled by bit set/reset of PC.

MODE 1 (PORT A)

CONTROL WORD

D, Dg D, D, Dy D, D, D,

LV;OI1[011’DN/XM

PCys

= INPUT
0= QUTPUT

PA,PA “'TI\

PCy O8F,

="
4
i

PCq | ATK,

-
INTE |
A i
<4

PCa s famimn

MODE 1 {PORT 8!

CONTROL WORD
0; Dg Dy D, Dy D, D, D,

L DA T

P8, P8, ‘_EIJ>

PC,

3

N
t
' Py
3

D

|

Figure 8. MODE 1 QOutput

wR
[\m.—.——_-.{
- 3
e f
b
/// ’ o ——————
INTR e /
: o ’
i e >
ATK l
| a
; Tax Sarr 1
ourrut

Figure 8. Mode 1 (Strobed Output)

- ~“APPENDIX 7 Pige I6

8255A/8255A-5

Input Control Signal Definition

STB (Strobe input). A “low™ on this input loads data into
the input latch. .

IBF (input Butfer Full F/F)

A "'high” on this output indicates that the data has been
loaded into the input iatch; in essence, an acknowledgement
IBF is set by STB input being low and is reset by the rising
edge of the RD input.

INTR (Interrupt Request)

A “high” on this output can be used to interrupt the CPU
when an input device is requesting service. INTR is set by
the 5TB is a ““one”, IBF isa “one” and INTE is a “‘one".
It is reset by the faliing edge of RD. This procedure aliows
an input device to request service from the CPU by“simply
strobing its data into the port.

.-
INTE A
Controlied by bit set/reset of PC . .
INTEB

Controlied by bit set/reset of PCo.

MODE 1 (PORT A

I
PRI
- CONTROL WORD
0, D b, D, Dy D, D, D, N
T T ; INTE ; C, 578,
[LLITREN | L)
| e, e — e,

= INPUT
o~ QUTPUT
[V

[T y—

'MODE 1 {PORT B!

- v, P8 |

CONTROL WORD

b, Dy Oy D, 0, D, B, D, ;-;;”—E—: | om—

L DO Y] L il I

PCg 3 f—r— 10

gormd PC,

1

{

——

1 Re—

18F,

Q_J_Z_._. TRy

Figure 6. MODE 1 input

(113

WPUT FROW
PERWHERAL
le
f

Flgure 7. MODE 1 (Strobed Input)

— APPENDIX 7 Page 17

'

At 5 i

P

Lol

8255A/8255A-5

Combinations of MODE 1

Port A and Port B can be individually defined as input or
output in Mode 1 to support a wide variety of strobed 1/0
applications.

e

AD —=of PCyte—— §TB, |

PCy b 1BF,

CONTROL WORD
D, Dg Dg O, Dy D; O, By PCy fp———= INTR,,
BEEEEE u\(l 2
! PCy 3 e 110
l 'C‘J
== jeInpUT P8, PBy “‘“J, N,
0= OuTPUT L=/
WR ——=0f P, fne OBF,

PC, b AEK,

‘\
PCy frmem INTR

PORT A — {STROBED INPUT!
PORT B — (STROBED OUTPUTH

pa,Pagl 8 >
WA ——df #Cy b OBF,

PCg fwm— ATK,

CONTROL WORD
D, Dg Dg D, Dy Dy 05 D, PC, fr INTR,
!1{0 11010 1 x@\jj z -
s PCy g fo—rF— 1O
PCus
“

1= INPUT s

0= oUTPUT fcate] N

RD =m0 PCy b T8,

PCy}———w I1BFy

PORT A ~ {(STROBED OUTPUT}
PORT B ~ (STROBED INPUT)

Figure 10. Combinations of MODE 1

Operating Modes

MODE 2 (Strobed Bidirectional Bus 1/0). This functional
configuration provides a means for communicating with
a peripheral device or structure on a single B-bit bus for
both transmitting and receiving data (bidirectional bus
1/0). “Handshaking"’ signais are provided to maintain
proper bus flow discipline in a similar manner to MODE
1. Interrupt generation and enable/disable functions are
aiso available.

MODE 2 Basic Functional Definitions:

e Used in Group A only.

® One 8-bit, bi-directional bus Port {Port A) and a 5-bit
controt Port (Port C).

© Both inputs and outputs are latched. |

@ The 5-bit control port {Port C) is used for control
and status for the 8-bit, bi-directional bus port (Port
A).

Bidirectional Bus 1/0 Control Signal Definition
INTR (Interrupt Request). A high on this output can be

used to interrupt the CPU for both input or output opera-
tions.

Output Operations

OBF (Output Butier Ful). The OBF output will go “low"
to indicate that the CPU has written data out to port A,

ACK (Acknowledge). A “'low" on this input enables the
tri-state output bufter of port A to send out the data.
Otherwise, the output buffer will be in the high im-
pedance state.

INTE 1 (The INTE Flip-Fiop Associated with OBF). Con-
trolled by bit set/reset of PCg.
Input Operations

STB (Strobe input)

STB (Strobe Input). A “low" on this input loads data into
the input latch.

IBF (input Butfer Full FIF). A “high” on this output in-
dicates that data has been loaded into the input latch.

INTE 2 (The INTE Flip-Flop Associated with IBF). Con-
trolied by bit set/reset of PC,.

.

-~ APPENDIX 7 Page 18 TR

8255A/8255A-5

CONTROL WORD
B, 0 O, D, D; D, D, D f - INTR,
SN i 1
LIR IR} (IRY ‘l o | .
i
K
o8r,
P20 e ACK
1= INPUT
0~ OUTPUT
b pORTE
Yo INPUT —e—— §T8,
0= OUTPUT
. 18F,
WR e Of
- = GROUP 8 MODE
0= MODE 0
1= MODE 1 3
AD s Of ’Cy, f—rF— 10
™
Figure 11. MODE Control Word Figure 12. MODE 2
DAYA FROM

 CPU TO 82564

o ta08 ——!

T
m)
Loun! 13 l
I8F
f—] e Lapp— :
RA
renine L___.___.._._...{)._,._D___.__
7 |
—mp— | ;
= N /
DATA FROM DATA FROM
PERIPHERAL TO B288A SISEA TO PERIPHERAL 7
DATA FROM
22544 TO 8080

Figure 13. MODE 2 (Bidirectional)

NOTE: Any squencs where WR occurs before ACK and STB occurs betore RD is permissible.

APPENDIX 7 Page 19

8255A/8255A-5

MODE 2 AND MODE 0 (INPUT)

CONTROL WORD
D, Dg D; D, Dy D, D, Dy

[T X

P
1% INPUT
0=0uTPUT

AD wsarmamrn Y

1

INTR,

PC, b OBF,

e jo—— ATK,
DU——
e, p——me 18F,

3
#Cyo A 1o

e 75,

MODE 2 AND MODE 0 {OUTPUTI

CONTROL WORD
B; Dy Oy D, D3 D; By O

BDzonnn

PCyp =
1= INPUT
0= QUTPUT

RD =

WA om0

re, e TR,

#C, e GBF,

e | ACK,

PC, fo— 578,

PCg f———= 18F,

N 3
PCyp fo—rf— 0
Pa,.P8;] >

MODE 2 AND MODE 1 {OUTPUT)

CONTROL WORD

©; Dy O5 D, D3 D, Dy g

LT e[

PCy e INTR,

rALPA,

e, e GBF,

e fo——— ACTK,
rc, fo—— 78,
Peg }mm——e 18F,

PCy f—sen OBFy
PC; famm——— ATK,,

¢y} tnTR,

MODE 2 AND MODE 1 (INPUT)

CONTROL WORD

O; Og Dy Dy Dy O, Dy Dy

RIEECONE RN

PCy e INTR,

] G

PC, prr—rremt OBF,,

PCq f————m ACK,

L B — §8,

PCy Jommr———e 18F,

§Thy

rc,
o e 18,

3

e INTRy

Figure 14. MODE 2 Combinations

APPENDIX 7 Page 20

8255A/8255A-5

Mode Definition Summary

: MODE 0 i MODE 1 MODE 2
IN out IN ouT GROUP A ONLY
PAg IN out IN ouT D
PA N out iN out -
PA3 IN our IN out -
PA3 IN out IN ouT -
PA4 IN ouT [N ouT -~
PAg IN out Y ouT -
PAg IN ouT IN ouT -y
 PAy N ! ouT IN out -y
PBp | IN | OUT IN out _)
PB; | IN | ouT Y out e
P8 | IN out | IN out —_—
PB3 | N out LN ouT — MODE 0
PB¢ i IN out I N ouT E— — OR MODE 1
PBs | IN out PN our — ONLY
PBg | IN | OUT IN ouT —
PB; | IN 1 OuT IN out —
PCo | IN | OUT INTRp INTRg 1o
PCy IN out IBFg O8Fg o
PCy IN ouT STBg ACRg /o]
PC3 IN out INTRp INTRA INTRA
PCq IN our §T8a 1/0 §TBa
PCs N out 1BF o 1o IBF 5
PCg IN ouT 1o ACKa ACKp
PCy IN ouT 1o OBF 4 OBF A

Special Mode Combination Considerations

There are several combinations of modes when not all of the
biws in Port C are used for control or status. The remaining
bits can be used as follows:
4f Programmed as inputs —
All input lines can be accessed during a normal Port C
read.
If Programmed as Qutputs —
Bits in C upper {PCy-PC4) must be individually accessed
using the bit set/reset function.
Bits in C lower {PC3-PCp} can be accessed using the bit
set/reset function or accessed as a threesome by writing
into Port C.

Source Current Capability on Port B and Port C

Any sst of sight output buffers, selected randomly from
Ports B and C can source 1mA at 1.5 volts. This feature
allows the 8255 to directly drive Darlington type drivers
and high-voltage displays that require such source current.

Reading Port C Status

in Mode 0, Port C transfers data to or from the peripheral
device. When the 8255 is programmed to function in Modes
1 or 2, Port C generates or accepts “"hand-shaking’ signals
with the peripheral device. Reading the contents of Port C

allows the programmer to test or verify the “‘status” of each
peripheral device and change the program flow accordingly.

There is no special instruction 10 read the status informa-
tion from Port C. A normal read operation of Port C is
executed to pertorm this function.

INPUT CONFIGURATION
D, 0 O 0o O 0, D5 D

vo | wo ms,‘mrg;:mn‘imrz,i 18F, i‘“"‘n
1o [vm Lo s oem] o o]

GROUFP A GROUP B

OUTPUT CONFIGURATION
b, O DO, DO ©P; D, D, D

Fﬂ,]mrgl w j 0 il'ﬂ'l“lnfs.;&?, ;:ml]

GROUP B

GROUP A

Figure 15. MODE 1 Status Word Format

D¢ b, O 0, D D, D

,

Grour s
//
{DEFINED BY MOOE 0 OR MOOE 1 SELECTION!

=l

GROUPF A

Figure 18. MODE 2 Status Word Format

8255A/8255A-5

APPLICATIONS OF THE 8255A

The B255A is a very powertul toot for interfacing
peripheral equipment to the microcomputer system. It
represents the optimum use of available pins and is tlex-
ible enough to interface almost any /O device without
the need for additional external logic.

Each peripheral device in a microcomputer system
usually has a “service routine’ associated with it. The
routine manages' the software interface between the
device and the CPU. The functional definition of the
8255A is programmed by the 1O service routine and
becomes an extension of the system software. By ex-
amining the /O devices interface characteristics for
both data transfer and timing. and matching this infor-
mation to the examples and tables in the detailed opera-
tional description, a control word can easily be devel-
oped to initialize the 8255A to exactly “fit” the applica-
tion. Figures 17 through 23 present a few exampies of
typical applications of the B255A.

INTERRUPT

REQUEST ‘

| PRy HIGH SPEED
PA, PRINTER

MODE 1
{QUTPUT}

PA; HAMMER
RELAYS

PC, DATA READY
ACK

PCg PAPER FEED
PCq FORWARD/REV

B,

P8, DATA READY
78, ACK

MODE 1 | PB PAPER FEED
foutPuT) PBg FORWARD/REV
Piy RIBBON
CARRIAGE SEN.

INTERRUPT

REQUEST

PCy

8255A

MODE 1 _
(INFUT)

MODE 1
{OUTPUT)

PCo

PAg
PA,
Pa,

A,
Pag
PAg
PA,

PCy

'Pﬂu

PB.‘
PBZ
P8y

P8
s,
Pc‘
Py
Pc5

- pC,

b s ACK

RO

R!

R, FULLY

R DECODED
3 KEYBOARD

Rl

Ry

SHIFT

CONTROL

STROBE

BO

B‘X

a, BURROUGHS
2 SELF SCAN

8, DISPLAY

B-I

By

BACKSPACE

CLEAR

DATA READY
ACK

BLANKING

CANCEL WORD

INTERRUPT
REQUEST

Figure 18. Keyboard and Display interface

PC, DATA READY
C, ACK

CONTROL LOGIC AND DRIVERS

ey
INTERRUPT

REQUEST

Figure 17. Printer Interface

INTERRUPT
REQUEST
|
PC3 [pay Ry
PA, R,
PA, R,
FULLY
WMODE 1 _| PA, 8y DECODED
(NPUT) 7] pa, R, KEYBOARD
PAg Ry
azssa | P8 SHIFT
A, CONTROL
Pc, STROBE
PC, ACKNOWLEDGE
PCy BUSY LT
pC, TEST LY
L
P8, L T aL
el ADDRESS
8, o " o—
mope 0 _| P8; o
(INPUTY] P, -~
-
"By
PR -
s, < T %

APPENDIX 7 Page 22

8255A/8255A-5

INTER® 191
REOLIEY ’ .
!
Pay Lss -
PC
ra, 1 | PAg Dy
Pa, PAy o,
ra, PA; D,
PA, FAy D, FLOPPY DISX
. ra o CONTAOLLER
MODE 0 PAg oa D‘ AND DRIV;
(OUTPUT) | Pag 12 817 s >
DA MODE 2 Pag B,
_ [2 ——
A, CONGERTER ANALOG OUTPUT oAy o
; PC, (DAC)
/ PC,
/ pe P, DATA STB
! 6 . ACK [Ny
szssa e, MSB "Cs
rc, DATA READY
e, STB DATA L " ads
[OUTPUT EN s2ss4 X
. P, TRACK “0" SENSOR
B
SET/RESET ’c, SYNC QEADY
rc, SAMPLE EN [INDEX
[N S8
P8y LsB 7 PBg ENGAGE HEAD
P8, ”:g L oeey FORWARD/REV
'B, CONVERTER f=—— ANALOG INPUT) PBy READ ENABLE
MODE 0 Pa; {ADCH MODED ' PB; WRITE ENABLE
(INPUT} P8, OUTPUT) © PBe DISC SELECT
g, | PBs ENABLE CRC
B, : PBg TEST
: P8, MSB | PBy BUSY LY
’ Figure 20. Digital to Analog, Anaiog to Digital Figure 22. Basic Fioppy Disc Interface
INTERRUPT INTERRUPT
REQuEsT T) REQUEST
E] H
" s, Ry P [eay Ry
. PA, Ry CRT CONTROLLER PA, f,
B LEVEL
PA, R, * CHARACTER GEN PA, R, A
™ Ry ® REFRESH BUFFER PA, Ry TaPE
. Pa, a, * CURSOR CONTROL ra, |- R, READER
PA, Ry P R,
mopEt | 3 >
MODE 1 _| PAy SHIFT aneum 1A R
E .
OUTPUTI | pa, CONTROL ' Pa, R,
PC, DATA READY rc, §7B
PCq ack PCy ALK
rc, BLANKED | " STOP/GO
rC, BLACK/WHITE
825SA 82554 MACHINE TOOL
-
[N START/STOP
re, ROW STB m:f_r‘)’ 4 re, LIMIT SENSOR (H/V)
rC, COLUMN ST8 rc, OUT OF FLUID
PCy CURSOR H/V STB -
(% 1 rra, CHANGE TOOL
wmope 0 _| P8, | rs, LEFT/RIGHT
touTPuT) | Pa, . e, UP/DOWN
CURSOR/ROW/COLUMN
s, ADDRESS “opEo | P8, HOR. STEP STROBE
8, HaV oUTPUT) | e, VERT. STEP STROBE
s, 2 re, SLEW/STEP
P8, j s, FLUID ENABLE
s, rs, EMERGENCY STOP
. L
Figure 21. Basic CRT Controlier intertace ‘Figure 23. Machine Tool Controlier intertace

APPENDIX 7 Page 23

8255A/8255A-5

ABSOLUTE MAXIMUM RATINGS* *‘COMMENT: Stresses above those listed under “Absolute

Maximum Ratings’”” may cause permanent damage to the
device. This is a stress rating only and functional opera-

Ambient Temperature Under Bias. 0°C to 70°C tion of the device at these or any other conditions above
Storage Temperature —65°C to +150°C those indicated in the operational sections of this specifi-
Voitage on Any Pin . cation is not implied, Exposure to absolute maximum
With RespecttoGround. ~0.5V 10 +7V rating conditions for extended periods may affect device
Power Dissipation, ...t 1 Watt reliability.
D.C. CHARACTERISTICS
Ta = 0°C to 70°C, Vg = +5V £5%; GND = 0V
SYMBOL PARAMETER MIN, | MAX. | UNIT TEST CONDITIONS
ViL Input Low Voitage -0.5 1 0.8 \
Vid Input High Voltage 20 | Veo v
Voo (DB} | Output Low Volitage {Data Bus) 0.45 \ lor = 2.5mA
Voo (PER)| Output Low Voltage {Peripheral Port) 0.45 \ loL = 1.7mA
Vor (DB) | Output High Voltage (Data Bus) 2.4 \Y lony = -400uA
Vou (PER) Ouibut High Voltage (Peripheral Port) | 2.4 \% lon = -20CuA
Ipar!?l | Darlington Drive Current -1.0 | -40 | mA Rext = 75092 Vexr= 1.5V
lee Power Supply Current 120 | mA
he Input Load Current +10 uA Vin = Vee to OV
loFL Output Float Leakage £10 | WA Vout = Vg to OV
Note 1: Available on any 8 pins from Port Band C.
CAPACITANCE
Ta =25°C; Vgc = GND =0V
SYMBOL PARAMETER MIN. TYP. MAX. UNIT TEST CONDITIONS
Cin Input Capacitance 10 pF fc = 1MHz
Cyo 1/0 Capacitance 20 pF Unmeasured pins returned to GND
750!
[ATA S ' ANA O Vext®
%‘: 1000F)
*VexT is set at various v ges during ing 1o gL the specification.

Figure 24. Test Load Circuit (for dB)

e

‘APPENDIX 7 Page 24

8255A/8255A-5

A.C. CHARACTERISTICS

Ta = 0°Cto 70°C; Ve = +5V £5%; GND = OV NOTE:
Bus Parameters ;rt:;- :mshr::-" sigf:e
Read: ;:;m::ﬂhnr:us are sub-
8255A B255A-5
SYMBOL PARAMETER MiN. MAX. MIN. MAX. UNIT
// taR Address Stable Before READ 0 0 ns
‘ tRA Address Stable After READ 0 0 ©ns
RR READ Pulse Width 300 300 ns
Rp Data Valid From READ! ! 250 200 ns
tpF Data Float After READ 10 150 10 100 ns
tRY Time Between READs and/or WRITEs 850 850 ns
Write:
8255A 8255A-5
SYMBOL PARAMETER MiN. MAX. MIN. MAX. UNIT
taw Address Stable Before WRITE ¢} 0 ns R
wa Address Stable After WRITE 20 20 ns
ww WRITE Pulse Width 400 300 ns
tow Data Valid to WRITE (T.E.) 100 . 100 ns
7w Data Valid After WRITE 30 30 ns '
Other Timings: f
8255A [- B255A5
SYMBOL PARAMETER MIN. MAX. F MIN. MAX. UNIT
. twe WR = 1 to Outputt H 350 350 ns
) R Peripheral Data Before RD 0 0 ns
s . tHR Peripheral Data After RD 0 v} ns
taK ACK Pulse Width 300 300 v ns
tsT STB Pulse Width 500 - ns
tps Per. Data Before T.E. of STB 0 0 ns
pH Per. Data After T.E. of STB 180 180 ns
tAD ACK = 0 to Outputlti 300 300 : ns
kD ACK = 1 to Output Float 20 250 I 20. 250 7 ns
twos WR =1 to OBF = 0t} 650 44 650 ns
taos ACK =0 to OBF = 111} 350 350 ns
tsig STB =0 to IBF = {1} 300 . 300 ns
B RD =110 IBF = 0!l 300 300 ns
triT RD =010 INTR = 01l a0 |} - -~ 400 ns
tsr STB =110 INTR = 111} €0 | . 300 ns
tarr ACK =11to INTR =111} 350 350 ns
twit WR = 01to INTR = i1} 850 c: ...) -850 ns

Notes: 1. Test Conditions: 8255A: Cy = 100pF ; B255A-5: Cy = 150pF.
2. Period of Reset puise must be at least S0us during or atter power on.
Subsequent Reset puise can be 500 ns min.

8255A/8255A-5

24

20 70
= TestroiNTs T
08~ =08

045

Figure 25. Input Waveforms tor A.C. Tests

|
" ‘ *
: | i
P——-’ hr ——e| “— Tum —
T
INPUT X ! i K
’ [—— L R ’,._—___ [M p———

[AW . X ! j X

Figure 26. MODE 0 (Basic input)
”“ X 7
i i
: [Tow o —e!
X — X
f Taw - fwa

o — X
o X

Figurs 27. MODE 0 (Basic Output)

APPENDIX 7 Page 26

8255A/8255A-5

18f

¥
! 7
INTR i
e 1}
[

NPUT FROM __ o e e e e e e ——— ——
PERIPHERAL]
h

Figure 28. MODE 1 (Strobed inut)

tave

tarr

ra—ei=twp

23 Figure 29. MODE 1 (Strobed Output)

APPENDIX 7 Page 27

8255A/8255A-5
DATA FROM
/ 8080 YO 8255
.
Y ‘ R TON
| >
OHF ’ \ \ /t
K i 2
/ \ - twoB —.:‘ "
INTR /‘ﬁ ! '
\1 : :)
— |
& /{ >
ATk \ \ -/
o 157 e
! i -
£T8 __4_/
;
tsmr—— ¢
8F ; \
oy e tape— e g e)
PERIPHERAL —_— P e e - o e o
e py—— 7 —— —ta
- - _—_/_'—
DATA FROM DATA FROM
PERIPHERAL TO 8255 8255 TO PERIPHERAL
DATA FROM
8255 TO Bo8O
Figure 30. MODE 2 (Bidirectional)
NOTE: Any sequence where WR occurs_lzt_;fore ACK and STB occurs__tf_foreﬁ_.D is permissibie.
(INTR = IBF « MASK « STB « RD + OBF « MASK » ACK - WR)

APPENDIX 8 Page 28

APPENDIX 8

MONITOR PROGRAM
-SOURCE LISTING-

Reproduced Courtesy of

MULTITECH INDUSTRIAL CORPORATION
977 MIN SHEN E. ROAD

TAIPEI 105 TAIWAN

Republic of China

E & L modifications at addresses

0037 Hex
&
077B Hex thru 07A4 Hex -

***See page 2 of source listing

"Appendix 8- Page 1

***THIS CODE REPLACES THE CODE SHOWN IN SOURCE LISTING

LOC OBJ CODE M STMT SGURCE STATEMENT

0037 71 181 DEFB ZSUM

2490 KEYTAB:

C778B 03 2491 KO DEFB 12H ; GO
077C 07 2492 K1 DEFB 1EH ; DUMP
077D OB 2493 K2 DEFB 1CH ; COPY
977E OF 2494 K3 DEFB 10H s NEXT
O77F 20 2495 K4 DEFB 20H ;NOT USED
0780 21 2496 K5 DEFB 21H ;NOT USED
0781 02 2497 K6 DEFB 13H ; STEP
0782 06 2498 K7 DEFB 1FH ; LOAD
0783 OA 2499 K8 DEFB 17H ; DELETE
0784 OE 2500 K9 DEFB 11E ; PREV
0785 22 2501 KOA DEFB 22H ; NOT USED
0786 23 2502 KOB DEFB 23H ;NOT USED
- 0787 01 2503 KOC DEFB 18H s PC
0788 05 2504 KOD DEFB 1AH ; CLR ‘BRKPT
0789 09 2505 KOE DEFB 16H 3 INSERT
078A oD 2506 KOF DEFB 14H ; DATA
078B 13 2507 K10 DEFB 09H sHEX 9
078C 1F 2508 K11 DEFB 0CH sHEX C
- 078D 00 2509 K12 DEFB 1BRE ;REG
078E 04 2510 K13 DEFB 15H ;SBR
078F 08 2511 K14 DEFB 1DH JRE.
0790 ocC 2512 K15 DEFB 19H ; ADDR
0791 12 2513 K16 DEFB O0DH sHEX D
0792 1E 2514 K17 DEFB 08H ;HEX 8
0793 1A 2515 K18 DEFB 06H ;HEX 6
‘0794 18 2516 K19 DEFB 03H SHEX 3
0795 1B 2517 K1lA DEFB 07H JHEX 7
0796 19 2518 K1B DEFB OFH JHEX F ,
0797 17 2519 K1C DEFB 05H sHEX 5
0798 1D 2520 K1D DEFB OLH SHEX 4
0799 15 2521 KI1E DEFB 02H ;HEX 2
079A 11 2522 KI1F DEFB OAH sHEX A
079B 14 2523 K20 DEFB ORH sHEX B
079C 10 2524 K21 DEFB CEH sHEX E
079D 16 2525 K22 DEFB O1lH sHEX 1
079E 1C gggg K23 DEFB 00H sHEX O
~ 2528 ; The new version has 2 decimal points in the
2529 ; initial display pattern.
2530 ;
079F 30 2531 MPF 1 DEFB OCH ;s BLANK
07A0 02 2532 - DEFB B6H 3 Y
07A1 02 2533 DEFB B3H ;ad
07A2 OF 2534 DEFB 3FH 3 A
07A3 ° 1F 2535 DEFB 8FH 3E
07A4 Al ~—=2536 DEFB 03H 1y

Appendix 8 DP2age 2

LOC = OBJ CODE M STMT SOURCE STATEMENT

<o ——.-

WRNMUAS WM

L T R R Y I I N I TN

;.".'.{,‘O“"Qtt.‘.“‘ll.“.‘.““"‘....‘t"’.t‘.“"’t“"

% *
»

Hd COPYRIGHAT , MULTITECH INCUZTRIAL CORP. 1881 -
Hd All right reserved. L4
Had No part of tkis softwnre may be copied without *
Hd the express written cunsent of MILTITECH ' *
Had INDUSTRIAL CORP. .
I3 3 N -
:"ttt.‘#t‘#t.#.'t!#tt‘tt#"llt“‘tl“"i“‘f‘t“tt“"‘.“"

TR IR T

»

P8255 EQUC 038 ;8255 I contrel port

DIGIT 00 02H ;8255 I port C

SEG7 EQU 01iH ;8255 I port B

XIN EQD 0CH ;82553 I port A

PYCODE EQU OASH ;Power—-up code

ZS0M EQU - 718 ;This will make the sunm of all

;monitor codes to be zero.

; The following EQUATEs are used for timing. Their values
; depend on the CPU ciock frequency. (In this version, the
; crystal frequency is 1.79 Miz.)

COLDEL EQU 201 ;Column delay time for routine
3SCAN and SCaNl.

F1KHZ EQU 65 ;Delay count for 1K Hz square wave,
.sused by routin TONEZIK. H

F2KEZ EQU 31 ;Delay count for 2K Bz sguare wave,
;used by routine TCNE2K.

MPERIOD EQU 42 ;1K Hz and 2K Hz tkreswold, used by

;tape input routirne PERIOD.

The following EQUATEs are for tape nodulation.

If the quality of tape recorder is good, the user may
change ‘4 4 2 8' to '2 2 1 4'. This will double

the tape data rate.

If the quality of tape recorder is poor, the user may
change '4 4 2 8 ' to '6 6 3 12'., This will improve
error performance but slow down the data rate.
Although the data format is changed, the tape is still
canpatible in each case, because only the ratio is
detected in the Tape-read.

L T T T TR T

ONE_IK EQU
ONE 2K EQJ
2ERO_1K £QU
ZERO_2K EQU

SENYNSy

EREEERSEX RSB EREREZERAZAXIEARAIRRSIRSEZ XL B SRS IEEBERS ST EIRELR S

I/0 port assigoment: (8255 I)

wr we

port A (address 00d):
bit 7 == tape inout
bit 6 == 'USER EEY' on keyboard, active low
bit 5-0 row of kexboard matrix input ,active low

port B (address 0l1H): 7 segaments of LED, active high
bit 7 -~ segament d

e wewr we

bit 6 =~ decimal point
bit § == segament ¢
bit 4 -- segament b
bit 3 == segament 2
bit 2 -~ segament £

. bit 1 =~ segament g
bit 0 -~ segament e

port C (address 028):

bit 7 == tape & tone output

bit 6 == BREAK enable. KMI (CPU pin 17) will goes to
low 5 M1's (machine cycle one) after this
bit goes to low. (This bit is connected to
the reset input of external counter.)

bit 5¢0 == columns of keyboard and display matrix,
active high. Bit S is the leftmost column.

tt.t.tt#tt.".,ltt‘tl“ltt‘t.‘ttl‘ttt““l“'#.."‘l't'““
-= reset --
There.are two cases that will generate a RESET signal:

e we e

[

Appendix 8 Page 3

LOC OBJ CODE M STMT SOURCE STATEMENT
80 (i) power-up

.
81 ; (1i) 'RS' key pressed
82 ; In both cases, the follow actions will be taken:
83 ; a) disable interrupt, set interrupt mode to O
84 ; set I register to 00 and start execution
85 ; at address 0000 (by Z80 CPU itself).
86 b) initial user's PC to the lowest RANM address;
87 ; ¢) set user's SP to 1FSFH;
88 ; d) set user's I register to 00 ard disable user's
83 ; interrupt flip~Ilop;
90 ; In addition, subroutine INI will be called on power—up
91 ; reset, which has the following effects:
82 e) disable BREAK POINT; .
83 f) set the contents of location 1FEEH 1FEFH to 66 and
94 and 00 respectively. This will make instruction RST
95 ; 38H (opcode FF) have the same effect as BREAK.
895 ; Memory location POWERUP is used to distinguish power-up
897 ; from RS-key. (POWERUP) contains a random data when
98 ; power-up and contains P¥CODE (OAS5H) thereafter.
- 98
0000 0600 100 LD B,0
0002 10FE 101 DJINZ $;Power—up delay
102
103 ; Initial 8255 to mode O with port A input, port B znd C
104 ; output. The control word is S0H.
. 105
JC04 kjx:le 106 . LD A,10010000B
000€ D3C3 107 ouT (P8255),4
108
109 ; When the control word.is sent cut to 8285, all output
110 ; poris are cleared to 0. I+t is pecessury to disable
111 ; BREAF and deactivate 211 1/0 by sendipg OCOH to
112 ; port C.
113
0008 3ECO i14 LD A,OCOH
000A D302 115 ouT (DIGIT),A
000C 31AF1F 116 LD SF,SYSSTK ;initial system stack
117
118 ; If the content of location PONKERUP is not equal to
119 ; PWCODE, call subroutine INI. Continue otherwise.
120
[s1e]0) 3 3AE51F 121 LD A, (POWERUP)
0012 FEAS 122 cp P¥CODE
0014 C4C103 123 CALL NzZ,INI
124
125 ; Determine the lowest RAY address by checkirz swhether
126 ; address 1000H is RAM. If yes, set user's PC to this
127 ; wvalue. Otherwise, sat it to 180CH.
123
0017 210010 129 LD HL,10090H
001A CDF605 130 CALL RAMCHK
001D 2802 131 JR Z,PREPC
QO1F 2618 132 LD, 4,180
0021 22DC1F 133 PREPC - LD (USERPC) ,HL
0024 2600 134 LD H,C
135 '
136 ; Address 28H and 304 are reserved for BREAR (RST 28H)
137 ; and software BREAK (RST 30h). ©Skip thecze area, monitor
138 ; prcgram resumes at RESZSTI.
. 139
0026 1804 140 JR RESET1
: 41 ;
i42 ;‘#t“#l“tt‘#"#tt#‘ttl“#ttt“t‘#tttt‘t"t#“’t“l’t““‘.t
0028 143 RST28 CRG 28H
144 ; Address 28H 1s the entry point of BREAE trap.
145 ; If a locatior is set as a BREAK point, the moritor
146 ; will change the content of this location to C7 (RST 28H)
147 ; before transferinog coatrol to user's program.
148 ; 1o execution of user's program, a trap will occur if
149 ; user's PC passes this location. The mornitor thesn takes
150 ; over control and the content of BRFAK address
151 ; will be restored. Monitor takes care of everythirng
152 ; and makes the whole rmechapism transparant to the user.
153 ; The return address pushed onto stack is tbe PC after
154 ; executing RST 28H. The original break address should
155 ; be one less than that. The following 3 imnstructions
156 ; decrease the content of (SP) by one without chacging
157 ; HL.
- 158 .) '
0028 E3 159 EX (SP),BL ‘
0028 2B 160 DBC BL

Appendix 8 Page 4

-

LoC

002A
002B
002E

0030

0030

0032
0035

0037

0038

0038
0039
003C

003D

003E

0041
0044
0047

0048
‘0044
004C
004P
0052

0053.

CBJ CODE M STMT SCURCZ STATEMENT

E3
22E81F
1808

1834

22D21F

181D

71

ES
2AEE1F
E3

c9

32E71F

2AEQLF
SAE21F
77

3E80
D302

. 3AE71F

2AE81F
0o
c9

161
162
183
164
165
166
167
168
169
170
171
172
173
174
175
1786
177
178
179
180
181
182
183
184
185
186
187
188
189
180
191
192
193
194
195
196
197
198
1989
200
201
202
203
204
205
208
207
208
209
210
211
212
213
214
215
216
217
218
219
220

221

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

EX (SP),HL
LD (HLTEMP) , AL
JR ~ CONT28-

H
AL I AR S P L LR B S ALl s b it dd il bl t i s da b td it
RST30 ORG 308

Instruction RST 308 (opcode P7) is uswually used as:
i) Software break;
i1) Terminator of user's program.
The effect of this instruction is to save all user's
registers and return to moanitor.

e wr v wE W

JR - NMI

"‘ttt"’#t“t.““ttt“l#tt“‘tta‘tl"ttt‘ttt‘lt.t‘lt"“.
This is a part of reset routine. Address 0028 and

0030 are reserved for break point. Reset routine

skips this area and resumes here.

Mt e wr ws s

ESET1 LD (USERIF),HL ;set user's 1 register and
;interrupt flip flop to O
JR RESET2 ;monitor resumes at RESET2

;‘it‘.‘t'.“.“‘t‘tt“"‘#.t‘l“““'l"tt“"“t““"“"‘

The following bvte makes the sun of the monitor
code ip ROM zero. ROMTEST is a seif-checking routine.
This routine requires the sun of ROM to be zero.

e wr wa

DEFB ZSOM

"tt"‘.#l““‘ﬂ“t“t‘l#““‘.#"‘tl‘t‘!tt“““““‘t“‘

;
™
RST38 ORG 38H

Entry point of RST 38H (opcode FF) or mode 1 interrupt.
Fetch the address stored in location 1PEE and 1FEF,
then jump to this address. Initially, 1FEE and 1FEF
are set to 0066. So RST 38 will have the same effect
as software break. Fy chanzing the content of 1FEE
and 1FEF, the user can define his or her own service
routine. .

The next three instructions push the contents of 1FEE
and 1FPEF to stack without changing any re .sters.

YT IR IR TR YR

PUSH HL
LD HL, (IM1AD)
EX (SP),HL

The top of the stack is now the address of user
defined service routine. Pop out this address then
branch to it.

.t wewe

* RET

H
;tttt"tt‘tt‘#ttltttt"#‘tt#t!tl"#tt#‘t.ttt‘ttlt‘ttttt‘t“t‘
CONT28: :

; This is a part of break service routine. It continues

; the program at RST28. ’

LD (ATEXP) ,A

The monitor has charged the content of user's
program at break address. The nex= 3 imstructions
restored the destroyed content. ERAD contains the
break address, BRDA contains the original data at
break sddress.

“ewmr uswe wy

LD HL, (BRAD)
LD A, (BRDA)
LD (HL),A -

Send bresk emable signal to hardsare counter.
A noomaskabie interrupt will be issued at the 5ta M1l's.

e we

LD A,100000C0B

orT (DIGIT),A

LD A, (ATEXP) ; lst M1
LD HL, (BELTEMP) ; 2od MI
NOP ;-3rd M1
RET ; 4th a1

Appendix 8 Page 5

Loc

0054
0057
005A
005B

00S5E

0062

0066

0066
0069
0068

006D
OQ6F
0071
0074
0077

0078 -

Q07B

O07E
0081
0085
o088
0084
008C
008D
O08E
008r
0020
0031
0092
0093
0084
00895
0098
0097

0098
009A

008D
QO09F
ocaz2
00A4

00AT7

OBJ CODE M STMT SOURCE STATEMENT

242
243 ; Return to user's program. Erxecute the instruction
244 ; at break address. After finishing oze instruction,
245 ; a normaskable interrupt happens and coatrol is
246 ; transrerred to the monitor again.
247 ;
L 248 RESET2:
219F1F 249 LD BL, USERSTK)
22D01P 250 LD (USERSDP), EL ;set user's 8P
AF 251 X0R A
32E6B1F 252 LD (TBST),A
253
254 ; TEST is a flag forvr zonitor's own use. Illegal key=-in
255 ; blanking (bit 7 of TEST) and automatic leading zero
256 ; (bit 0) use this flag. Clear it here.
257 . .
DD219F07 258 LD - IX,MPF_I ;Initial display pattera.
259
260 ; Address 0066 is the address for nooraskable interrupt.
261 ; Skip this area, monitor resumes at SEISTO
262
C3D000 263 JP SETSTO
264 . .
265 ;tttt“t"tttttt'tt‘tt.ttt!#t*tt“‘#t&t‘tt#t.t“ttt‘t“‘lt‘1
266 NMI ORG 66H
267 ‘
268 ; Eatry poisnt of nomaskable interrupt. MNMI will occur
269 ; when MONI key is pressed or w%hen user's prograan is
270 ; breaked. The service routine #hich starts here saves all
271 ; user's registers and status. It also check the validity
272 ; of user's SP. .
: 273
32E71F 274 LD (ATEMP),A ;save A register
"3E90 275 LD A,100100002
D303 276 ouT (P8255),A ;set 8255 to mode O.
. 277 ;Port 4 input; B,C output.
3ECO - 278 LD | A,0C09)
D30z 279 © ouT (DIGIT),A ;disable break aad LED's
3AE71F 28C LD A, (ATEHP) ;restore A register
22E81F 281 °'RGSAVE LD (HLTEX®), HL ,sa7e register EL
El 282 PGP HL ;get return address from stack
22DE1F 283 LD (ADSAVE), HL ;Save return address into
284 ;ADSAVE.
22DC1F 285 . LD (USERPC), HL ;8et user's PC to return
286 ;address.
2AE81F 287 LD HL, (HLTEXYP) ;restore HL register
ED73DO1F 288 LD (USER’SP),SP :8et user's SP to currest Sp
31DO1F 289 LD- SP,USERIY+2 ;save other regzisters by
FDES 290 PUSt IY ‘;eontinously pushing them
DDES 291 FUSH IX ,onto stack
D9 292 EXX
ES5 293 PUSH HL
D5 284 PUSH DE
Cc5 295 PUSE BC . .
D9 296 EXX
08 297 EX AP ,AFP"
r5 298 | PUSH AF
08 299 EX AF ,AF'
E5 300 PUSEH HL
D5 301 PUSH DE
C5 302 PUSE BC
F§ 303 POSH AP
304
305 ; The next two instructions save I register.
306 ; The interrupt flip~-flop (IFF2) is copied into
307 ; parity flag (P/V) by ipstruction LD A,lL
308 ; The interrupt status (enabled or disabled)
g?g ; can be determined by testing parity flag.
ED57 311 LD A, I .
32D31F gig LD (USERIF+1),4A

314 ; The next four instructions save IFF2 into
315 ; user’‘s IFF.

318
3E00 317 5 I 4,0 :
E2A4400 318 . Jp PO, SETIF ;PO == P/V =
3E01 319 LD A1 ’ v=o
32D21F 320 SETIF LD (USERIF),A
321
31AP1F 322 LD SP,SYSSTK ;set SP to system stack

Appendix 8 Page 6

LOC

00AA
00AD
00E1
ne32
0055
COB7
ooB8
0088

O0BD
COC1
QoCc2

00C3
00C6
oo
00C9
00CD

00CE

00DO
00Dl
00D4

6oD7
00DA

o0DB

'OODE.
00E1

Q0E4

Q0E7

00ES
O0EB

OBJ CODE M ST™T SOURCE STATEMENT

2ADO1F
DJD21B507
2R
CDFPEODS
2013

2B
CDF605
2013

DD21AFO7
00

Go
1162E0
19

3807
DD21B61F
37

1804

AY
32E41F
3AE21F

2AEQLF
77

DCOBC4~

31AP1F
CDFEOS

CDCBO6

18F5

FE10
3824

323
324
325
326
327
328
329
339
331
332
333
334
335
338
337
338
338
340

- 341

342

343

344

345

346

347

348

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
3€8
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

387.

388
389
390
391
382
393

- 394

395
386
397
398
389
400
401
402
403

The next 8 instructions check user's SP.
If the user's SP points to a location not
in RAM, dispiay EHRR-3P.

v we ve

LD AL, (CSERSP)
LD IX,ERR SP
DEC HL -
CALL RAMCHE

JR NZ,SETSTO
DEC - HL

cALL RAMCHK

JR Nz ,SETSTO

If the user's stack and system stack are
overlaved, display SYS-SP. This checking
is done by the following instructions.

LD I1Z,8YS SP

NOP -

NOP

LD DE, ~USERSTK+1

ADD HL,DE

JR C,8ETSTO

LD IX,DISFBF

SCF ;set carry fiag to indicate

;the user's SP is legal.
JR BRRSTO

*

SETSTO:

STATE is u memory location contains the menitor status.
It will be described in detail later. STATE 0 stands
for fixed display pattera. The initial pattera 'uPF--1'
or message 'SYS-SP'... belong to this category. The next
two instruction set STATZ to zero.

e wews e we

XOR A ;set A tc O, also clear Carry flag
LD (STATE) ,A
BRRSTO LD A,(BRDA) ;restore the data at
;break address
LD HL, (BRAD)
LD (HL),A

If the user's SP is legal (carry set),
display user's PC and the content at PC.
Otherwise, display fixed message (ERR-SP
or SYS~SP or uPF--1) :

CALL C, MEMDP2

s wewe Wy

t#‘t‘t#‘tttt'*tttttt*t#ttttlttttttttt#tlttit‘tt“tttt#t##‘ti
Scan the display and keyboard. When a key is

detected, take proper action according to the

key pressed. :

TR TE TR TR Y

- MAIN:

LD SP,SYSSTK ;Initial system stack.
CALL SCAN ;Scan display znd inoput keys.
;Routine SCAN will cot return until
;any key is pressed.
CALL BEEP ;After a key is detected, there
;will be accompanied with a beep
;souad.
JR HAIN ;Back to MAIN, get more keys and
;execute them. -

;attttcttnnttt:tt:tta:s:tttatttt:tttst:ttt‘ttzttttt:t:-ttttt
KEYEXEC:

Input key dispatch routine.

This routipe uses the key code returned by subroutine
SCAN, which is one byte stored in d register. The
range of key codeeis from 00 to 1FH.

e ws e W

(1) key code = 00 ¢ OFH :
These are hexadecimal keys. Branch to routine KHEX.

..o

cp 10H
JR C,KBEX

Appendix 8 Page 7

Loc

OCED
00FO0

OCF2
0074
00F6
OOF9

O0FC
0100
0102

0105

0106
010¢e
0108

0108

OBJ CODE M STMT SOURCE STATEMENT

21EGLF
CBC6

D&10
FEO8
213707
DABQO3

DD21B61F
Deog
21E41F
77

21E31F
3600
214107

C3B003

404
405
406
407
408
408

" 410

411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
238
440
441
442
443
444
445
44¢&
447
448
4489
450
451
452
453
454
485
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483

must
This

YT T T DT Y

(11)

R IR IR I TR E T T Y

(iil)

s M we e e e

If the key entered is not hexadecimal, it must be s
function aor suofunction key. This means the previous

pumeric entry bas terminated. Bit O of TEST flag

be set at the beginning of a new numeric entry.
is done by the pext twe iastructions. (If bit O

of TEST is set, the data buffer will be autcmatically
cleared when s hexadecimal key is entered.)

LD HL, TEST
SET 0, (HL)

key code ~ 10H ¢ 17H :

(+, -, GO, STEP, DATA, SBR, INS, DEL)

There is no state corresponding to these keys.

The response of ther depernds on the current

state and minor-state. (E.g., the response of '+'
key depends on the current fuhction. It is i1llegal
when the display is 'uPF--1', but is legal when the
display is of 'address—data' fom.) In this
documentation, they are named 'sub-function key'.
They are all brancked by table KSUBFUN and routin
BRANCH.

SUB 108

Cp 8

LD HL, KSUBFUXN
JP C,BRANCH

key code = 18H ¢ 1FH

(PC, Addr, CBr, Reg, Move, Rela, WRtape, RDtape)
These keys are named ‘function key'. They are
acceptable at zpy time. V¥When they are hit, the
monitor will 'mconditicnally enter a new state.
STMINOR costains the winor-state, which is required
to dispatck some sub-function keys (e.g. +, —).

LD IX,DISPB?

SuB 8

LD ., STATE

LD (HL),4 ;set STATE to key~code minus 18R

:The STATE is update here. It will
;be modified later by local service
;routines if the functionkey is PC,
;Addr or CBr. For other function
:keys, STATE will pot be modified:

;later.
LD HI, , STMINCR
LD (BEL),0 ;set STMINOR to O
LD Hi,,K*UN ;KFUX is the pase of branch table

;the offset is stored in A
JP BRANCH -

» .
;3"’*#“"3“‘#'#.#‘t‘#t‘#tt##*Qt#‘#"‘t#‘t"“t!.l‘.““##"

;STATE:

; O=FIX ;Display fixed pattern, e.g. 'uPF--1'.

H 1=A0 ;The hex xey entered is interpreted as
;mamory address.

H 2=DA ;The bqg key enterel is interpreted as
icemory datz.

N 3=AGPIX ;Display fixed pattern: 'Reg~ ' and
;expect register paze to be entered.

H 4=KV ;Expect parameters for 'Move' function.

; 5=RL ;Expect parameters for 'Rela'’ functioon.

H 6=AT ;Expect parameters for 'WRtape' func.

; 7=RT ;Expect parameters tor 'RDtape’ func.

;. 8=RGAD :Hex~key entered will be interpreted as
;address name for registers.

s . 9=RGDA ;Hex~key entered will be interpreted as

L I LR LT

;data for registers.

Subroutine name conventions:
(1) K???? — K stands for key, ???7 is the key name,

e.g. KINS correspocds to key 'INS'. Eaco
time a key ??7?? is entered, the routine -
with name K?7?? will be executed. All of
then are branched by table IPUN or KSUBFUN.

(ii) H??7?? -- E stacds for hexadacimal, ???? is the

current STAIE. For example, routine

-

Appendix 8 Page 8

Loc OBJ CODE M STMT SOURCE STATEMENT

485 ; HDA will be executed if the entered
22; ; ;ely i1s hexadecimal and STATE is DA now.

; ese routines are b e
487 ; HTAB. re branched by tadble
488 ; (111) 1???? == I stands for increment (+ key), ??7?? is
489 the current STATE. E.g. IMV will be
490 ; executed when STATE is MV aad ‘+' key
491 ; is entered. These routines are branched
492 ; - by tabie ITAB
493 ; (iv) D???? =—- D stands for decrement (- key), ???? is
484 ; the current STATE. These routines are
495 ; branched usiog table DTAB.
496 ; (v) G???? -~ G stands for 'GO' key, ???? is the curreat
497 STATE. These routines are branched using
498 ; table GTAB.
499
500 ;““‘#‘t‘t#t#‘t#“tltitt‘&ttttt‘t*‘t'*tt‘!t“ﬂ! tAEEREEERRKR
501
"502 ; Hexadecimal, '+', '-' and 'GO' key may be entered after
503 ; different function keys. The moritor uses braach tables
504 ; and STATE to determine the current function and branch
505, ; to the proper entry point.
506 ;
507 KHEX:

508 ;Executed when hexadecimal keys are pressed.
. 509 ;Use BTAB and STATE for further branch.
510 .
o111 4F 511 " LD C,A ;save A register ia C
512 ¢ ;which is the hex key-code.
0112 214807 513 4 LD HL, HTAB
0115 - 3AE41F 514 BR1 LD A, (STATE)
0ils C3B003 515 Jp BRANCH
516 .
517
518 KINC:
519 ;Branched by KSUBFUN table.
520 ;Executed when '+' key is pressed.
521 ;Use ITAB and STATE for further brunch. -
522 ;STATE is will be stored in A register at BRl.
523
0118 218707 524 LD HL, ITAB
O11E 18F5 525 JR BR1
526
527 ;
528 KDEC:
529 ;Branched by EKSUBFUN table. Executed
5§30 ;when '~' key is pressed. Use DTAB and
531 ;STATE for further tranch. STATE will be
532 ;stored in A register at BRIL.
533
0120 216307 534 LD HL,DTAB
0123 18F0 535 JR BR1
- 536
537
538 KGO:
539 ;Branched by KSUBFUN table. Executed
540 ;wher 'GO' key is pressed. Use GTAR and
541 ;STATE for furtner branch. STATE will be
542 ;stored in A register at BRI1.

543
0125 216F07 544 LD HL,GTAB
0128 18EB 545 JR BR1
’ 5458 '
547

548 KSTEP:
549 ;Branched by teble KSUBFUN. Executed
550 ;when 'STEP' key is pressed.

551

0124 CDE503 552 CALL TEST™ ;Check if the left 4 digits
553. ;of the display, are mepory sddress.
554) ;If not, disable all LED's as
555 ;a warping to the user. This
556 ;:is done by routine IGNORE.

012D C2BBC3 557 JP NZ, IGNORE

0130 3E80 558 LD A,10000000B ;This data will be output
559 . ;to port B to enable
560. ;BREAK. It is done by

: 561 - ;routine PREOUT.

0132 C3A302 562 JP PREOUT
563
564 ;

appendix 8 Page 9

LoC

0135
0138

0131
013D
0i3E
0id4C
0143

0146

0147
014
014D
0150
0153
0156
0159

015C

015D
0160
0163

0166
0167

016A
016B
016E

0171

0174
0177
0178
017A
017C
Ol7E
0181
0183

OBJ CODE ¥ STMT SOURCE STATEMENT

565 [IDATA: :
566 ;Branched by table XSUBFUN. Executed
567 ;when 'DATA®' key is pressed.
‘568 R !
CDES03 569 CALL TEST™ ;Check 1f the left 4 digits
570 ;0f the display are menory address.
2004 571 JR NZ,TESTRG ;If rpot, braach to TISTRG
572 ;to check whether the display
573 ;1s register or aot.
CDOBO4 574 CALL MEMDP2 ;I yves, displzy the data of
5735 ;that address and set STATE
576 ;to 2,
c9 577 RET
PEOB - 578 TESTRG Cp 3 ;check 32 the status is 8 or 8
579 ’ ; (RGAD er RGDA).
DABRO3 580 JP C,IGNCRE ;If rot, igrore this key and
581 3send out 2 warning message.
CD7704 582 CALL REGDPY ;If yes, display register ana
583 ;set status to 9 (RGDA).
[ad:] 584 RET .
585
586 ;
587 KSBR:
588 ;Branched by table ESUBFUN. BExecuted
589 ;when 'SBr' key (set break point) is
590 ;pressed.
591
CDE503 592 CALL TEST™ ;Check i1f the display is of
593 ; 'address—-data' form.
C2BBO3 594 JP NZ,IGNORE ;If not, ignore this key and
595 ;send out 2 warning message.
2ADELF 586 LD HL,(ADSAVE) ;1f ves, get the address
597 ;being display reow.
-CDF605 598 CALL RAMCEX ;Check it this address is
599 , ;in RAM.
"C2BB0O3 600 JP - NZ, IGNORE ;If pot, ignore the "SBR' key
601 . ;and send out a warnicg message.
22E01P 602 LD (BRAD),HL ;If yes, set this address as
603 ;8 break point.
CD0OBO4 604 CALL MEMDP2 ;Display the data of break
605 ;address and set STATE to
606 ;2 (DA).
c9 607 RET
608
609 ;
610 KINS:
611 ;Branched by table ESUBFPUN. Executed
612 ;when 'Ins' key (insert) is pressed.
613
CDES03 614 CALL TESTM ;Check if the display is of
. 615 ;'address—~data’' form now.
C2BBO3 616 JP NZ, IGNORE ;If not, ignore the 'INS’' key
617 ;and send out a warning meéssage.
2ADE1F 618 LD HL,(ADSAVE) ;If yes, get the address beiong
619 ;displayed oow.
620
00 621 NOP
622
22AF1F 623 LD {STEPBP),HL ; Store this address in
824 ;STEPBP and the next address
625 ;in STEPBF+4 for later use.
23 626 INC HL
22B31F 627 LD {(STEPBF+4), HL
CDF605 €28 CALL RAMCHK ;Check 1f the address to be
8298 ;inserted is ino RAM.
C2BBO3 830 JP NZ,IGNORE ;If not, ignore the "INS' key
631 ;and send out a wirning message.
832 ;If the address to be inserted
€33 ;is in 1800~1DFF,store 1DPE into
834 sSTEPBF+2
€35 ;O0therwise, ignore the 'INS' key.
836 ;This is done by the following,
837 ;instructions.
11FEI1D 638 LD DE, 1DFEH
7C 638 LD A,H
FE1E €40 CcP 1EH
3807 641 JR C,SKIPH1
PE20 642 CP 20H
DABBO3 643 JP C, IGNORRB
1627 644 - LD D,27H
ED53B11P 645 SKIPH1 LD (STEPBF+2),DE
Appendix 8 Page 10

LOC

0187
0184A

0188
o18C
O18F
0182

0195

0196
Olg2

019C

0i9F
Oxag

01a3 -

0145

01A9
01AC
01AD
01AF
01B1
01B3
01B6
01B3
01BC
O1BD
01Co

OBJ CODE M STMT SOURCE STATEMENT

CDE402
AF

12

2AB31F
22DE1F
CDOBO4

c9

CDES02
C2BBO3

2ADELF

00

22B31F
CDFE05 -
C2BB03

11001E
7C
FE1E
3807
FE20
DABBO3
1628 .
ED53B11F
23
22AF1F
18C5

646
647
648
€649
€50
651
652
653
654
655
656
657
658
659
660
661
662
663

‘664

6€5
666
667
668
669
€70
671
672
673
674
875
676
677
678
679
€80
681
682
683
684
685
686
687
688
689
690
691
692
693
684
695
695
697
698
699
700
701
702
703
704
705
706
707
708
708
710
711
712
713
714
715
716
717
718
718
720
721
722
723
724
725
726

;¥hen one byte is inserted at some
;address, all data below this address
;will be shifted down one position.
;The last location will be shifted out
;and therefore lost.

;The RAM 1s divided into 3 blocks as
;ipsert is concerped. They are:
;1800~1DFF,1EQO0~1FFF and 2000-27FF

;The 2 nd block cannot be inserted and
;is usvelly used as data bank. System
;data that of course cannot be shifted
;are also stored in this bank. Each
;block is independent of the other when
;shift is performed, i.e. the data
;shifted out of the first block will not
;be propagated to next block.

;The shift is accomplished by block
;transfer, i.e. MOVE. This is the

;Jjob of swroutine GMV.

;Routine GMV needs 3 parameters which
;are stored in step~buffer (STEPBF):
;STEPSP: starting address (2 bytes);
;STETBF+2: endinpg address (2 bytes);
;STEPBF+4: destication address (2 bytes).

DOMY CALL CHV
XOR A ;After the RAM has been shifted down,
;the data cof the address to be inserted
;1s cleared to zero. This is done by
;the next two instructions. Register
;DE contain inserted address after GNV
;1s perfomed.

LD (DE),A
LD . HL,(STEPBF+4) ;Store the data 1in (STEPBP+4)
LD (ADSAVE),EL ;into (ADSAVE).

CALL ¥EMDP2 ;Display the address and data, also
;set STATE to 2.
RET

KDEL:
;Branched by table KSUBFUN. Rxecuted
;when 'Del' (delete) key is pressed.

CALL TESIM ;Check 1t the display is of
; 'address~data’ fom. .
JP NZ, IGNORE ;If pot, isgore the 'Del' key and
ss5ead out & warnicz message.
; 'Delete' is quite similar to
s 'Insert', except tka*t the memory
;is shifted up instead of shifted
;down. See the comments on
;routine EINS for detalil.
LD HL,(ADSAVE) ;Get the adarezs beilaz displayed
;now. This is the address to
;be deleted.

NOP

LD (STEPBF+4),HL -
CALL RAMCHE ;Check if the address is in RAM.
, Jp NZ, IGNORE :1f pot, igpore this key anda
;send out a warning message.
sPollowing iastructions prepara the
sparameters for routine GMV in step—
;butfer. Reter to rcutine EINS for
.;detail. .
LD DE, AEOOH
LD A, B
cp 1EH
JR C,SKIPH2
cp 20H
JP C, IGNORE
LD D,28H
SKIPH2 LD (STEPBP+2),DE
INC HL .
LD (STEPBF) , HL
JR DOMV

SEEVEBREXXFE SR BAZ RIS SR E RS S SR ESSEAEESEECEESASRSEEEXRERBEREE S

Appendix 8 Page 11 -~

LCC

o1C2
01C5
o1cs

01CB

01CC

olCF
01iD2

01D5

01D6

01DA

010D

O1DE

01E1l

01E2

O1B5

01E8

OBJ CODS W STMT SOURCE STATEMENT

2ADCIF
22DELP
CDOBO4

cs

CDDEO3

22DE1P
CDOBO4

c9

DD21CACO7

CDC404

C9

CD0204

cg

2ADE1F

22AF1F

Ch3404

727
728
729
730
731
732
733
734

735

738
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
758
760
781
762
763
764
755
766
7867
768
768
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
7920
79
792
793
794
785
796
797
798
798
800
801
802

803

804
805
806
807

KPC:
; Branched by table KPUN. Executed vwhen
; 'PC' key is pressed.-,

LD HL,(USERPC) ;Store the user's program’

LD (ADSAVE.) HL ;counter into (ADEAVE)

CALL MEMDP2 ;Routine MEMDP: displays the address
‘1n (ADSAVE) =2nd its data. It also
;set the STATE to 2.

RET

KCBR:
; Branched by table KFUN. FExecuted when
; 'CBr' (clear break point) key is pressed.

CALL CLRER ;Call swroutine CBRBR to clear
‘break point. When returced, ‘the HL
;register will contain FFFF.

LD (ADSAYE),HL ;Store FFPFF into (ADSAVE)

CALL MEMDP2 'Display addreqs and its data. Also
;set STATE to 2.

RET

r
EKREG:
; Branched by table XFUN. Executed when
; 'Reg' key is pressed. -
LD IX,REG_ ;Boutine SCAN uses IX as a poirter
’ 'ror display buffer. Set IX tc REG_
;will make SCAN displays 'Reg=-
CALL FCONV ;Decode user's flag F and P' to
sbipary display formmat. This
;format will be used later, when
juser requires the monitor to
;display decoded flag by pressing
;keys 'SZXH', 'XPNC’,...
RET . :

KADDR:

; Branched by EFUN table. Executed when
; 'Addr' key is pressed.

CALL MEMDP1 ;Display the address stored ic
s (ADSAVE) and its data. Set STATE
;to 1 (AD).

RET

Function Move, Relative, Read-tape and
Write-tape require from one to three
parameters. They are stored in STEPBP

(step buffer). STHINCOR (mipor status)
contains the numper of parameters has been
entered. For Move and Relative, the

default value of the first parameter is

the address stcred in (ADSAVE). There

is no default value for the first parameter
(filename) of Read— and Write-tape. When the
function keys are pressed, STMINOR is automatically
reset to 0.

W MWL WY MW W B WE W W W W v

EMV:
; Branched by table KFUN. Executed when
; "Move' key is pressed.
KRL:
: Branched by table KEPUN. Executed when
; 'Rela' (relative) key is pressed.
LD BL,(ADSAVE) ;Store the contents of ADSAVE
;into STEPBP as default value
;of first parameter.
LD (STEPBF) , HL
EWT:
; Branched bty table-KFUN. FEzxecuted
; when 'WRtape' key is pressed.

ERT:
; BPranched by table KFUN. Ezxecuted when
; 'RDtape' key is pressed.

CALL STEPDP ;Display the parameter that -
;15 beirg entered now by calling
;awroutine STEPCP.

Appendix 8 Page 12

Loc
OlEB

O1EC

OlEF

o1y¥2
O1FS

O1F8

O1FB
O1FC
O1FE
.0201
0202
0205

0208

0209
-0208
020C
020

0211

0212
0213
0217
0214

021B
o21C
‘021F

02290

0223

Q226

0227
0228
0224
022¢C

022F.

0230

08J CODE M STMT SOURCE STATEMENT

c9

C3B503

2ADELF

CDF605
C2BBO3

CDEEO3

79
ED6F
CDOBO4
od°)
21DE1F
CDFAQ3

79

ED6F
23
ED6F
CDC204

c9

79
DD21B61F
21E31F
87

77
CD7304
co

CD5504
CDFAOQ3

79

ED6?
23
EDSFP
CD3A04
c9

CDBBO4

808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825 .

826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
8§48
849

850.

851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
87¢%
880
881
882
883
884
885
885
887
888

RET

;“"t"‘lt't‘tt‘t“"‘ﬁtttt‘tt#‘#t"ttt!t"‘..‘l.tt“.“*"
; The following subroutines with name K?77?7

; are the service routine for hexadecimal

; keys corresponding tt each STATE. Tuey

; are all branched by table ETAB and STATE.

BFIX JP IGNORE ;WVhen the display is fixed pattera
;hexadecimal keys are illegal.
;Disable all LED's 2s a8 sarning
;message to the uscer. This is what
s;routine IGNCRE does.

i 4
BDA LD HL,(ADSAVE) ;Get the address being displayad
;now from (ADSAVE)
CALL RAMCHK ;Check if it is in RAM.
JP NZ, IGNORE ;If not, ignore this key and
. ;send out a sarning message.
CALL PRECL1 ;If this is the first hexadecizal
;key entered after function or sub-
;function kxey,reset the data of that
;&ddress to 0. (by routine PERCLL)

LD A,C ;The key~code is saved in C at
sroutine KHEX.. Restore it to A.
RLD :Rotate the key-code (4 bits) into

. ;the address obtained above. (ia HL)
CALL MEMDP2 ;Display the address acd datz,
;then set STATE to 2 (D&).
RET

HAD: LD HL,ADSAVE

CALL PRECL2 ;If this is the first hezdecimal
;key after function key is entered,
;set the contents of ADSAVE to O.

LD - A,C ;The key-code is saved ia C
;by routine KHEX.
;The cext toree instructions shift
;the address being displeyed by
;one digit.

RLD

INC HL

RLD

CALL MEMDP1 ;Display the address and its
;data. Also, set STATE to 1.

RET
HRGAD:
HRGPIX:
LD A,C
LD IX,DISPBF
LD HL,STMINOR
ADD A,A ;The key=-code is the register
' ;name. Double it and store it
;into STHINOR.
LD (BL),A
CALL REGDP8 ;Display register and set
;STATE to 8. (RGAD)
RET
»
HRT:
HWT:
HRL:

HMV: CALL LOCSTRF ;Use STMINOR and STEPBF

;to calculate the address
;o0 current parameter in
;step buffer.

CALL PRECL2 ;If this is the first hex
;key entered, cleared the
;parameter (2 bytes) by
;PRECL2. -

LD A,C ;C contains the key-code.
;Rotate the parameter (2 bytes)
;1 digit left with the key-code:

RLD

INC HL

RLD

CALL STEPDP ;Display the parameter. ;
RET

.
’

HRGDA CALL LOCRGBF ;Calculate the address of

) Appendix 8 Page 13

LoC
0233

0238
0237

0239
023cC

0243
0244
0247

C24A

G248

024E
024F

0252
0254

0255
0258

0258

025C

025P
0260
0262
0263
0265
0267

028A

0268

0268

OBJ CODE ¥ STMT SOURCE STATEMENT

CDEEO03

79

. EDgF

CD7704
c9

C3BBO3

2ADELF

22
22DELR
CDOBO4

c9

«1z31F

34
CD5F04
2004
35

C3BB03
CD3A04

c9

21E31P

34
3E1F
BE
3002
3600
CD7704

c9

C3BBO3

2ADE1P

889
890
891
892
893
894
895
896
897
8898
899
800
801
902
903
804
905
208
907

908

909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
952
933
934
935
236
937
938
933
940
941
942
943
944
945
946
947
948
949
950
951
952
953
854
855
956
957
958
959
950
861
962
863
964
965

966.

267

-988

2969

o7
Appendix 8 Page 14

;the register being modified.
CALL PRECL1 ;If this 1s the first hex
;key entered. Clear the register
;(1 byte) by PRECLL.
LD A,C ;Rotate user's register (1 byte)
;1 digit left with the key-code
;stored in C.
RLD
CALL REGDPY ;Display the register and set
;STATE to 8 (RGDA).
RET
;tttttttttt‘tttt*ttitt‘#ttttt"t#‘t‘l‘ttttt*tttt‘t"t#t.#t“
;The followlng routines with neme
;1?7?77 are the service routines for
;"+' key ccorresponding to each STATE.
;They are all branched by table ITAB
;and STATE.
IFI1X:
IRGPIX:
JP IGNORE ;'+' key is 1lleagl for state
;FIX or RGFIX, ignore 1it.
7
IAD:]
IDA: LD HL,(ADSAVE) ;Incrense the sddress being
;displayed cow (in ADSAVE)
;by 1.
INC H.
LD (ADSAVE),HL
CALL MEMDP2 ;Display the sddress and data,
;then set the STATE to 2.
RET
IRT:
INT:
IRL:
INV: Lc HL.STYINOR ;STMINOR coptains the
;parameter couat, increment
:1t bv one.
INe (HL)
CALL LOCSTNA ;Check if the count 1is
;overflowed.
JR NZ,ISTEP ;If ugot overflowed, coatinue
;at ISTEP.
DEC (HL) ;Otherwise, restore the count
;and iznore the '+' key.
JP IGNORE
ISTEP CALL STEPDP ;Display the parameter at
»Step buffer.
RET
IRGAD: v
IRGDA: LD HL,STMINOR ;In these states, the STMINOR
;contalns the register nane.
;Increase it by 1. If it
sreaches the last one, reset
31t to the first one (0.
INC (HL)
LD A,1FH
"CP (HL))
JR NC, IRGNA
LD (EL),0
IRGNA CALL REGDP9 ;Display the register and
;8et STATE to S.
- RET
;“#“t‘ttl‘ltttitttttttt‘ttttt"ttttttt#ttttttt"“tl!‘t““
;The following routines with name
;D???? are the service routipes for
;'=' key corresponding to each state.
;They are all branched by table DTAB
;and STATE.
DPIX:
DRGFIX:
. JP IGNCRE ;’~' key 13 illegal for
;these states. Ignore it.
DAD:
DDA : LD HL,(ADSAVE) ;Decrease the address being

;dis;lxygd now {(in ADSAVE)

LOC
0271

0272
0275

0278

0279

027C
027D
0282
0282
0283
0286
0289

028D
028E
0290
0291
0233
0235

0258

0299

029C
028P

0241

0243
Q2A8

0243
02AB
02AE
0280
02B2
02B5S

OBJ CODE M STMT SOURCE STATEMENT

2B
22DEI1F
CDOBO4

(042

21E31F

35
CDSF04
2004
34
C3BBO3
CD3A04
(of:]

21E31F

35
3E1F
BE
3002
361F
CD7704

Cc9

C3EB03

2AEOQOLF
3B8EFP

3EFP

32BA1F
JaD21r

CB47
21FBCH
2002

2EF3
22EBIP™
31BC1F

871
972
873
974
975
976
977
878
879
280
981

- 982

8383
984
885
886
987
988
989
990
891
892
993
994
8995
996
997
898
899
1000
1001
1002
1003
1004
1005
10086
1007
1008
1009
1010
1011
1012
1013
1014
1015

© 1016

1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1¢c31
1032
1033
1034
1035
103¢e
1037
1038
1033
1040
1041
1042
1043
1044
iQ4s
1046
1047
1048
1049
1050

;by one.
DEC HL
LD - (ADSAVE),HL
CALL MEMDP2 ;Display the address and data,
;set STATE to 2 (DA). :

RET
’
DRT:
DWT:
DRL: ’
DMV: LD BL,STMINOR ;In these states, STMINOR
scontains the parameter count.
;Decrease it by one. If overflow
;occurs, restore STMINOR and
signore the '-' key. Othertise
scontinue at DSTEP. i
DEC (BL)
CALL LOCSTNA
JR NZ ,DSTEP
INC ({HL)
Jp IGNGRE
DSTEP CALL: STEPDP ;Display the parameter.
RET
DRGAD: -
DRGDA: LD HL,STMINOR ;In these states, STMINOR
;contains the register name.
;Decrease it by one.’ If it
:goes below zero, set it to
sthe highest value (1F).
DEC (HL)
LD A,O1FB
CP (HL)
JB NC,DRGNA
LD (HL) ,1FH

CRGNA CALL REGDPS ;Display the register and
;set STATE to 8.
RET

?
;‘##3"8"“‘8#‘."*‘3#‘l“tt‘&"#l“'t‘l“l““‘tt#“#i“#‘

;The tollowing rcutines with name
;G?7?7? are the service routines for
;'GO' key corresponding to each
;state. They are all branched by
;table GTAR and STATE.

GFIX:
GRGFIX:
GRGAD:
GRGDA: JP IGNORE ;'GO' key is illegal for
;these stateg., Ignore it.
’
GAD:
GDA: LD HL, (BRAD) ;Get the address of break
spoint.
LD (BEL),OEFH ;Instruction RST 28H.
;The content of break address
;is changed to RST 28H before
;the control is transfered to
;user's program. This
;wil]l cause a trap when user's
;PC passes this point.
LD A, OFFH ;8ave FFP into TEMP. This data
;will be cutput to porti B later.,
;PP is used to disable break point.
PREOOT LD {(TEMP) A ;Store A into TEMP,
LD A,(USERIP) ;Save two instructions into
. ;TEMP and TEMP+l. These two
;instructions will be executed
;later. If the user'‘s IFF
;(interrupt flip~flop) is 1,
;the inpstructions are 'EI RET'.
;Otherwise, they are 'DI RET'.
BIT 0.4
LD HL, OCSFEH ;'EI','ART’
JR NZ,EIDI
LD *1,0P34 ;'DI*
EIDI LD (TEMP+1),HL
LD SP,REGBF ;Restore user's registers by

;settiong SP to REGRP {register

Appendix 8 Page 15

LOC

02B8
02B9
02BA
02BB
02BC
02BD
02BE
02BF
02C0
02C1
02C2
02C3
02C4
02C6
02C8
o02cC
02CF
02D2
02D4

Q205
0208
02p9

02DC
O2DE

02E1

02E4
02E7

02EA

02EC
02F0
02Fr2
02F4
02F5

.02F6
02F7

0®J CODE M STMT SOURCE STATEMENT

1051 ' ;buffer) and continuously poppiog
1052 ;the stack.

Pl 1053 POP AP

Ci 1054 POP BC

D1 1055 POP DE

El 1056 POP HL

08 1057 EX AF ,AF'

F1 1058 POP AF

08 1059 EX A¥ AT’

D9 1060 EXX

Cl 10861 POP BC

D1 1062 POP DE

El 1063 PoP HL

D9 1064 EXX

DDE1 1065 POP IX

FDE1l 1056 POP 1Y

ED7BDO1F 1667 LD SP, (USERSP) ;Restore user's SP.

328D1F 1068 LD (USERAF+1),A ;Tenporarily save A

3AD31F 10689 LD A,(USERIF+l) ;Restore user's I

ED47 1070 LD I,A

ES 1071 PUSH HL ;The next 2 instructions
1072 . ;push the address being
1073 ;displayed now (in ADSAVE)
1074 ;onto stack without changing
1075 ;HL register. This address will be
1076 ;treated as user's new PC.

2ADE1F 1077 LD HL, (ADSAVE)

E3 1078 EX (sP),EL

3AEAlFP ‘1079 LD A, (TEMP) ;Output the data stored in
1080 ;TEMP to port B of 8255.
1081 ;:This data is prepared by
1082 ;routine ESTEP or GAD or
1083 ;GDA. In first case, 1t is
1084 510111111 and will enable
1085 'break point. In other
1086 ;cases, it is FF and will
1087 ;disable break poi:z
1088 ;If break is enabled nom
1089 .maskable interrupt %ill occur
1090 ;5 Ml's after the OUT 1astructAon.

D302 1081 ouT (DIGIT),A

3ABD1F 1092 LD ,(USERAP+1) ;1st M1,
1093 Restore A register.

C3EBI1F 1094 JP TEMP+l ;2nd Ml
1095 ;Executa the two instructions
1086 ;5tored in RAM. They are:
1097 H EI (or DI) ;3rd M1
1088 ; RET ;4th M1
1099 ;The starting address of user's
1100 ;program has been pushed onto
1101 'tbe top of the stack. RET pops
1102 - ;out this address and transfers
1103 ;control to it. The first M1
1104 ;of user's program will be the
1105 ;:5th Ml after OUT. If break poiat
1106 ;is enabled, NMI will occur after
1107 ;this instruction is completed.
1108 ;This is the mechanism of sipgle
1109 . - ;step.
1110 ;
1111 :ttt‘tt‘t#‘ttt‘t#tttt‘t‘t““t‘t“#"‘“‘3“.“"‘##".““‘

21AF1P 1112 GMV LD BL,STEPBF

CD3D0S5 1113 CALL GETP ;Load parameters from
1114 ;6tep buffer into registers.
1115 . ;Also check 1f the pirameters
1118 ;are legal. After GETP,
1117 ;HL = start address ol source
1118 “sBC = length to MOVE.

3867 1119 . JR C,ERROR ;Jump to ERROR if the
1120 ;parameters are illegal. (I.e., Ending
1121 ;address ¢ starting address.)

ED5BB31F 1122 LD DE, (STEPBF+4) ;Load destination
1123 ;address ‘into DE.

EDS52 1124 SBC HL,DE ;Compare HL and DE o
1125 ;determine move up or dowa.

300C 1126 JR NC,MVOP
1127 . ;Move down:

ER 1128 EX DE. 8L ;HL = destinatlon address

09 1129 ADD HL.BC ;BL = dect. address + length

2B 1130 DEC HL ;BL = epnd sddress of dest.

EB 1131 EX DE. il ;DB = end address of dest.

"Appendix 8 Page 16

LoC
Q2r8
O2FB
0ZFD
02FE

0300

‘0301
0303
0304

0303

030A

c308
030C

o30r
0310
0312

G313
0314
0315

0317

0319
031A
0318

031C
0320

0323

0324

0327

0329
Q3zc

.032F
0332

0338
0338
0338

033E
0341

0344

0BJ CODE M STMT SOURCE STATEMENT

2AB11F
EDBS

13

181¢

19

EDBO

1B

1816
EDSBAF1F

13

13
2AB11F

17
7C
CEGO
203a
7D

1B
12

ED53DELF
CD0OBO4

(84:)

€D2D05

382A

32B51F
~21A00F

CDDEQS
21AF1F

010700
CDA705
21A00F

CDE205
CD3A0S

CDA705

1132
1123

1134

1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

1151

1152
1153
1154
1155

Appendix_8 _ Page 17 ’ B

MVUP:

GRL

LD ' HL, (STEPBF+2\ ;HL = end address of source
LDDR block transfer instruction
INC DE DE = last address moved
JR . ENDFUN .Continue at ENDFUN. .
;Move up:

App ' AL,DE ;HL 18 destroyed by
'SBC HL.,DE. Restore HL.

LDIR ;block transter
DEC DE ;DE = last address moved
JR ENDPUN ;Continue at ENDFUN.
i‘t“"t"‘t‘t‘tt“‘#“‘t“‘t“t‘t‘t“ttt"'.‘t.“t‘.t“.“‘
; LD DE, (STEPSF) ;ioad starting address
;into DE.
INC DE 'Increase this address by 2.

ENDFUN :

.o

;Relative address is used in
'1nstruction JR or DJNZ.

;The codes for thum are 2 bytes.
;The FPC is increased by 2 after
,opcode is fetched.

INC DE
LD HL,(STEPBP+2)';Load destionation
;address into HL.
OR A
SBC HL, DE ;Calculate difference.
LD AL 'Cbeﬁx if the offset is belween
; +127 (O007PH) and -128 (PF80H).
;If the offset is positive, both d
;and bit 7 of L must be zero; if it
;1s negative, H and bit 7 of L must
;be FP and 1. In both cases, addizg
:H with bit 7 of L results 1z O.
RLA ;Rotate bit 7 of L into carry flaz.
LD AH
ADC A,0 ;ADD H and bit 7 of ..

JR NZ, ERROR ;Branch to ERROR if
'the result is nonzero.

LD A,L

DEC DE .

LD (DE),A ;Save the offset ipto
;the next byte of opcode.
;(DJINZ or JR)

LD (ADSAVE) ,DE ;Save DE into ""3AVE.

CALL MEMDP2 ;Display this address and
;its data. Set STATE to 2.
RET

;t‘#‘#*#‘t#t‘t#.#tt#‘#t‘tt#‘t““‘tt‘tt"“ttt*‘tttt*ttl-ttt

GVWT:

CALL SUM1 ;Load parameters from
. ;step buffer into registers.
;Check if the parameters
;are legal. If legal, calculate
;the sun of all data to be output

‘;to tape.
JR C,ERROR ;Branch to ERRCR if the
. ;parameters are illegal. (lepght is
;negative)
LD (STEPBP+8),A ;Store the checksun into
;STEF3F+6.
LD . HL,4000 ;Output lk Hz sguare

;wave for 4000 cycles.
;Leading sync. signal.
CALL TONE1K
LD BL,STEPBF ;Output 7 bytes starting
- ;at STEPBF. (Iaclwude:
;filename, starting, ending
;address and checksum)

LD BC,7 .
CALL TAPEOUT
LD HL,4000 ;Output 2k Hz square

;wave for 4000 cycles.
;Middle sync. The file name of the
;file being resd will be displayed
;in this interval.

CALL{ TONE2K

CALL" GETPTR ;Load parameters 2into
;registers. (Starticg, eanding and
;length).

GALL TAPEODT ;Qutput user's data.

Loc
0347

‘0344

034D
0351

0353
0357

0354
035D
0360
0362

03564
0367

036A
036C

036D
036E
036F

0371
0374

376

0379
037¢C
037F

0381
0385

0388
Q38A
038D
038F

0392
0383
0395

0397
0399
0398

- 0398

0340
03A3

03A5

03A8
03AB

0BJ CODE M STMT SOURCE STATEMENT

21A00F

CDE205
EDSBB31F
18C9

DD21A907
C3D000

2AAF1F
22EALF
3E40
D301

21E803
CD8CO05

38F4
2B
7C

BS
20F8

CD3CO5
30FB

21AF1F

010700
CD4D03S
38DF

- EDSBAFI1F

CDE506

CE96
CD24086
19FB
2AEALF

B7
-ED32
20Ce

3EOZ
D301
CD3405

38B3

CD4D05
3BAE

CD2D05

21BS51F
BE

1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
12862
1263
1264
1265

- 1266

1267
1268

1269

1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292

11293

LD

CALL
ENDTAPE LD
JR

ERROR LD

JP

-
»

HL,4000 ;Output 4000 cycles of

: ;2k Hz squire wave.
;(Tail syaoc.)

TONEZ2K .

DE, (STEPBP+4) ;DE = last address

ENDFUN ;Continue at ENDFON.

IX,ERR_ ;IX points to '-Err
SETSTO ;Set STATE to 0 by
;branchipog to SETSTO.

REBEBEPELEI RS EB LR ERS S ERRER SN SES LR SR REESERREXZRERXERRBERESR

3

GRT
LD
LD
LEAD LD
ouT
LD

LEAD1 CALL

DEC

LD
OR

LEAD2 CALL
JR
LD’
LD
CALL
LD
CLLL

FILEDP CALL

DJNZ
LD

OR
SBC

ouT
CALL

JR

CALL
JR

CALL

LD
CP

HL, (STEPEF) ;Tenporarily save filename.
(TEMP), HL
A,01000000B ;decimal point
{(SEG7),A ;When searching for filename,
;the display is blank initially.
;If the data read from MHIC is
;acceptable 0 or 1, the display
;becomes 'eeenss'.
HL, 1000
PERIOD ;The return of PERIOD
;is in flag:
; NC -~ tape input is 1k Ez;
; C —- otherwise.
C,LEAD ;Loop until ieading sync.
;is detected.
HL ;Decrease HL by one when
;one period is detected.
AH
L ;Check if both B and L-.are O.
NZ,LEAD1 ;Wait for 1000 periods.
iThe leading sync. is accepted
;if it is lomger than 1000
;eycles (1 second).
PERIOD .
NC,LEAD2 ;Wait all leading syac. to
;pass over.

"BL,STEPBF ;Load 7 bytes from

X ;tape into STEPBF.

BC,7

TAPEIN

C,LEAD ;Jump to LEAD if ipput
;1s not successful.

DE, (STEPBF) ;Get filename from

;step butfer.
ADDEDP ;Convert it to display

;fomat.
B,150 ;Display it for 1.5 sec.
SCAN1
FILEDP

HL, (TEMP) ;Check 1f the input
;filename equals to the
;8pecified filename.

A

HL,DE

NZ,LEAD ;If not, find the leading

;sync. of next file.

312 2ilename is found,
A,00000010CR ;segament '~'
(SEG7),A ;Display '=—=—=—-=',

GETPTR ;The parameters (starting

;ending address and check-

;sun) have been load igto

;STEPBPF. Load them into

;registers, calculate the block

slength and check it they are

- 3legal.
C,ERROR ;Jump to ERROR if the

;parameters are illegal.
TAPEIN ;Ipput user's data.

C,ERROR ;Jump to ERROR if input

;is not successful,

SON1 ;Calculate the sun of all

;input data.

HL,STEPBF+6 .
(HL) ;Compare it with the

e e —.

T, - R e B e

Appendix 8 _ Ppage 18 | e

LOC

03AC
O3AE

0380

03B1
03B2
03B3

03B4
03B5
03B6

03B7

0389
03BA

O3EB
03BE

03C0

03C1’

03Cs

03C7
03C3
Q3cc
03CB
03D0
03D1

03D3
03D5
03D8
Q3DB

OBJ .CODE M STMUT SOURCE STATEMENT

2045
189D

SE

23
56
23

85
6F
6E

2600
19
E9

21E61F
CBFE

cs

* DD21A507 -

’

OEOQ7
0610
CD24086
10FB

‘DD2B

oD
20F4

3EAS

C3B306
216600
22EEL1FP

o= Appendix 8__.page 19_

1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311

©1312

1313
1314
1315

-1316

1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357

1358°

1359
1360
1361
1362
1383
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

schecksun calculated by and stored
; 'WRtape'.

JR NZ,ERROR ;Jump to ERROE if not
;matched.
JR ENDTAPE ;Continue at ENDTAPE.

-‘*tﬁt‘t‘t‘“‘."ﬁ‘t"“““.“"‘"t.t‘lt.U“#“l““t‘."#

BRANCH:
;Branch table fomat:
byte 1,2 : address of the l1st routine in
each group.
byte 3 : difference between the address
of 1st and lst routine, which is
of course O.
byte 4 : difference between the address
of 2nd and 1st routine
byte 5 : difference between the address
of 3rd and 1st routine

HL : address of branch table

A : the routine number in its group

'Such branch table can save table length and avoid page
(256 bytes) boundary problenm.

MAARLELE LR TR 22 TR TR T T I P

LD E,(BL) ;Load the address of lst
;routine in the group into
;DE register.

INC HL

LD D, (BL)

INC HL ;Locate ‘the pointer of differeuce
;table.

ADD AL

LD L,A .

LD L,(HL) ;Load the address
;difference iato L.

LD H,0

ADD EL, DE ;Get routine's real address

JP (HL) ;Jump to it.

H SRBETXFXEISEREXILFERELES RS NA R AR AEREE I LSS EAEAREEREE R E RIS S S

IGNOQORE: '

. LD BL, TEST .

SET - 7,(HL) ;Routine SCAN will check bit
;7 of TEST. If it is set,
;all LEDs will be disabled.
;This is a warnipg message to
.the user when a illegal key
:1s entered,

BET
-t#‘Q“‘ttttt#ttt‘tttttt.tttt‘tt‘t'ltt#ttttt‘*t.tt“.‘tttt.#
INI:

; Power—-up initialization.
LD IX,BLANE ;;BLANK is the initial pattern
;Display the followlng
- ;patterns sequence, each 0.16
;seconds:
; L] 1]
- .]
v upr.
; 1 upPl
. , i ' uPF-!
H ' yPP=-t
H ' uPF--1"'

LD ‘C, 7T _ipattern count
INI1 LD B,108 ;Display 0.16 second.

INI2 CALL SCAN1

DJNZ INI2 -

DEC IX ;next pattern

DEC o}

JR NZ,INI1
. LD A, PWCODE

Jp INI3
INI4 LD HL,NMI

LD (IM1AD),HL ;Set the service routine

;0 BRST 38H to NMI, which is the

LOC OBJ CODE M STMT SOURCE STATEMENT

1375 ;nomaskable i{nterrupt service
1376 ;foutine for break point and
1377) ;sirgle step.

1378 CLRBR: .

1379 ; Clear break point by setting
1380 ; the bresk point address to
1381 ; PFFF. This is a nop-existant
1382 ; address, so break can rever
1383 ; bappen.,

1384
03DE 21FPFFF 1385 LD HL, OFFFPH
03El- 22E01F 1386 - LD (BRAD), HL
03E4 (o] 1387 RET
: 1388 ;
1389 TESTH:

1380 ; Check 1f the display i1s of 'address-data'
1391 ; fomm, i.e. STaTE i1 or 2.

1392 ; The result 13 stored in zero flag.
1393 ; Z: yes
1384 ; NI: npo
1395 .
03ES 3AE4LF 1386 LD A,(STATE)
O3ES FEO1 1397 Ccp 1
03EA cs8 1398 RET 2z
O3EB FEO2 1398 cp 2
O3ED Ccs 1400 RET
’ 1401

’
1402 PRECLI1:
1403 , Pre-clear 1 byte. .)
1404 ; If bit 0 of TEST is pot 0, load O-into (HL). Bit 0 of
1405 ; TEST is cleared after check.
1406 ; Only AF register are destroyed.

1407
03EE 3AEG1P 1408 LD A, (TEST)
Q3F1 B7 1408 CR A ;Is bit 0 of TEST zero?
Q3r2 cs8 1410 RET z ’
0373 3E0Q0 1411 LD 4,0
03F5 77 1412 LD (HL),A ;Clear (HL)
O3F6 32E61F 1413 LD (TEST),A ;Clear TEST too.
03F9 c9 1414 RET
1415

1416 PRECLZ2:

1417 ; Pre-clear 2 bytes.

1418 ; If bit O of TEST is nonzero, clear (HL)
1418 ; and (BL+1).

1420 ; Only AF register are destroyed.

1421

03FrA CDEEO3 1422 CALL PRECL1

03FD Cc8 1423 RET z

O3FE 23 1424 INC HL

O3FF 77 1425 LD (HL),A

0400 28 1426 DEC HL

0401 c9 1427 RET
1428 ;
1429 ;“"t#t”"8*“8‘3“##ﬁt‘tttttttttttt‘t*##‘*#t‘t#*t#t#’tttt
1430 ~; Memory display fomat: (address~data)
1431
1432 ; i) A.A.A.A. DD -~ State is AD. four decimal points
1433 ; under the address field indicacze
1434 that the numeric key entered will
1435 ; be interpreted as memory address.
1436 ; 11) A A A A D.D.-— State is DA. Twvo decimal points
1437 ; under the data field indicate
1438 ; the monitor is expecting user to
1438 ; . ‘ enter menory .data.
1440 ; i11) A.A.A.A. D.D.-- 8ix decimal points indicate ‘the
1441 ; address being displayed is set
1442 a8 & break point.
1443

‘ 1444 MEMDPL: .

0402 3E01 1445 LD A,l ;Next STATE =1

0404 . 0604 1446 LD B,4 ;4 decimal points active

0406 21B81F 1447 LD HL,DISPBP+2 ;The first active decimal
1448 ’ ;point is in DISPBP+2, the
1449 . ;last in DESPBF+5.

0409 1807 1450 JR SAV12 ;Continue at SAV12.

: 1451 MEMDP2: ' 4

040B 3EO0Z 1452 LD A,2 ;Next STATE = 2

040D 0602 1453 . LD B,2 ;2 active decimal points

040F 21B61F 1454 LD HL,DISPBF ;1st decimal point is in
1455 ;DISPBP, 2nd in DISPBP+1.

Appendix 8 Page 20

' LOC
0412
0415
0416

041A

041D,

041E

0421
0424

0425
0428
0429

042B
042D
0427

D432
0433
0434

0436
0437
0438

043A
043D
043E
043F

0440

0443

0446
0448
044B
044E

044F -

0451
0454

OBJ CODE M STMT SOURCE STATEMENT

32E41F
D8
EDSBDE1F

’CDGSOG

14
CD7106

Z2AEOQLF
7E

32E21F
B7
EDS2

2006
0606
21B61F

2}-]
DS
CBFé&

23
10FB
cs

CD5504
S5E
23
56
CD8506

21B81F

0604
CD3404
CD5FO04
6F
2802

22B61F
ce

e s AR

‘.Appendix 8

1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481

1482
1483

1484

1485

1483
1487

1488
1489
1490
1491

1492

1493

1494

1495

1493

1497

1498
1499
1500
1501

1502

1503

1504

1505

1506
1507

1508

1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536

SAV12 LD
EXX
LD

CALL

CALL

BRTEST:

(STATE),A ;Update STATE
;Save register HL,BC,DE.
DE, (ADSAYE) ;The address to be
. ’ ;displayed is storad in
;s (ADSAVE). Load 1t into
. ;DE register.
ADDRDP ;Convert this address to
;display fomat and store 1t
;into DISPBP+2 ¢ DISPBF+S5.
A,(DE) ;Load the data of this
;address into A register.
DATADP ;Convert this data to
;display format and store it
;into DISPBF ¢ DISPBF+l.

; The next 3 instructions serve to refresh the
; datz at break address every time memory is

displayed.
LD
LD

LD
OR
SBC

JR
LD
LD

EXX
SETPT1 EXX
SETPT SET

INC
. DJNZ
RET

Step display

e ws e e

'P' is the di
indicate P's

i) Move

i1i) Relsa

e ms s WP MEMe e WY W e e

STEPDP:

11i) ¥WRtape

iv) RDtape

HL, (BRAD) ;Get break point address.
A,(HL) ;Get the data of this

;address into A register.
(BRDA),A ;Store it into BRDA (break data).
A
HL,DE ;Check it the address to

;be displayed is break poiat.
NZ,SETPT1 ;If not, jump to SETPTI1.

’ B,6 ;6 active decimal points.

dL,DISPBF ;1st decimal point is in
;DISPBF; 6th in DISPBF+5.

;Restore HL,BC,DE.

6,(HL) ;Set decimal points.
;Count in B, Zirst address
;in HL register.

HL

SETPT

EERREFXIXRARZLEBERAEERBEXEBARE BB AR RS AR RS ERZXZEERSES AR ERREEEE

forrat: (this format is used when user is

entering peraneters for Move, Rela, WRtape, RDtape.)

P.P.P.P. - N

git of parameter. Four decima:i points
are being rodified now. N i{s the mnemonic of

the parameter:

[2]

-= starting address
-- ending address

- destination address
-= source address
destipation address
-= file name

-= startinrg address
== ending zadress

~= file name

WL oOnow
I

;Display step buffer and its parameter narce.

'Iuput. STATE

STMIONR (parameter count)
,registnr destroyed: AF,BC,DE, HL

CALL
LD

INC !
LD
CALL

LD -
LD
CALL
CALL

LD
LD

LD
RET

LOCSTBF ;Get parameter adadrsss

E,(HL) ;Load parameter into DE

e

D, (RHL)

ADDRDP ;Convert this parameter to
;display format (4 digits)
;and store it into DISPBF+2
; ¢ DISPBF+S.

HL,DISPBF+2 ;Set 4 decimal points.

;Prom DISPBF+2 tc DISPBF+3.

B,4
SETPT
LOCSTNA ;Get parameter pame.
L,A
s:z ;Pattern '=-' for 2nd rightmost
.dlgit.
(DISPBP) EL
Page 21

Lec

0455
0458
0459
045C
045D
045E

' 045F

1 0462

0464
0465
0466
0469
046a

0468
046E
046F
0470
0471

0472

0473
947

0477

0479

OBJ CODE M ST™MT SOURCE STATEMENT
1837 ;

1538 LOCSTBF:
1539 ;Get the location of parameter.
1540 ; address = STEPBF + STMINOR*2
1541 ;register destroyed: AF,HL
1542
3AE31P 1543 LD A,(STMINOCR) ;Get parameter count.
87 1534 ADD A,A ;Each parameter has 2 bytes.
21AF1F 1545 LD HL,STEPBF ;Get base address.
85 1546 ADD AL
6P 1547 LD L,A
Cc9 1548 RET
1549 ;
1550 LOCSTNA:
1551 ;Get parameter name.
1552 ;Input: STATE, STMINOR
1553 ;Output: parameter pame in A, and Z flag.
1554
©1855 - ;register destroyed: AFP,DE
3AE41F 1556 LD A,(STATE) ;Get STATE.
1557 ;Possible states are:
1558 ;4,5,6,7. (Move, Rel,
1559 ;¥8tape, RDtape)
D604 1560 sSUB 4 ;Change 4,5,6,7 to
1581 ;30,1,2,3.
87 15862 ADD A,A ;Each state has 4 bytes for names.
87 1563 ADD A,A
11BCO7 1564 LD DE, STEPTAB
83 1565 ADD ALE
5F 1566 LD E,A ;Now, DE contains the
15687 ;address of 1lst name
1568 ;for each state.
3AE31F 1568 LD A,(STMINCR) ;Get perameter count
83 1570 . ADD A,E ;DE (=== DE + 4
5P 1871 LD E,A
1A 1572 LD A (DE) ;:Get parareter name.
B7 1873 OR A ;Change zero flag. 1If the
1574 ;returned pattern (in A) is
1375 ;zero, the '+' or '-' must.
1576 ;have been pressed beyond legal
1577 ; parameter boundary. (Check i1
1578 ;parameter name got from STEPTAB.
- 1579 ;is zero)
co 1580 RET
1581 ;
1582 ;‘.t---tt‘t““ttt&‘.tt"0.t#"t‘t“#t'tttt“"“‘#"**OQ"‘
1583 ; Register dispiay fomat:
1584
1585 ; i) X XXX YY - State is REGAD. The nuneric data
1588 ; entered is interpreted as
1587 ; register name.
1588 ; YY is the register pame, the
1588 ; data of that register pair is
1586 ; XIXX.
1591
15e2 ; i1) X XX.X. YY or
1583 ; iti) X.X.X X Y Y -- State is REGDA. The unit of
1584 ; register modification 1s byte.
155 The numeric data entered will
1596 ; change the byte with decimal
1887 ; points under it. Decimal points
1598 ; - can be moved by '+' of '-~' keys.
1598
18GC REGDPS:
1601 ; Display register and set STATE to 8.
1602
3E08 1603 LD A,8 ;Next state = 8
1302 1604 JR RGSTIN
1605 .
1606 RBGDP9:
1607 ; Display register and set STATE to 9.
1808
3805 16809 LD A,B ;Next state = 9
1810
1811 RGSTIN:
16812 ; Update STATE by register A.
1613 ; Display user's register (count
1814 ; ccetained in STMINOR). -
1615 ; register destroyed: AF,BC,DE, HL
1616
32541Y LD (STATE),A ;Update STATE.

1617

V Appendix 8 Page 22

LOC OBJ CODE M STMT SOURCE STATEMENT

047C 3A321P 1618 ip A, (STMINOR) ;Get register count.
047P CB87 1619 RES 0,A ;Registers are displayed by
1640 ;pair. Fird the count
1821 . * ;of pair leader. ({count of
1822 ;the lower one)
0481 47 1623 LD B,A ;Temporarily save A.
0482 CDAEO4 1824 CALL RGNADP ;Find register count.
1625 ;3tore then into DISPBP
1628 ;and DISPBP+1.
0485 78 1627 LD A,B . ;Restore A (register pair leadesr).
0486 CDBEC4 1628 CALL LOCRG ~ ;Get the address of
’ 1629 user's register.
0489 5E 1630 LD E,(HL) ;Get register data. (2 bytes)
048A 23 : 1631 INC HL
0488 58 1632 LD D,{EBL) .
048C ED53DE1F 1633 LD (ADSAVE) ,DE ;Convert them to display
. 1634 ;format and store iato
1635 ;display buffer.
04980 - CD6506 1636 CALL ADDRDP
0493 3AE41F 1637 Lb A, (STATE)
0496 FPEOS 1638 Ccp] ;I1f STATE equals to 8 (RGDA),
1638 ;8et 2 decimal points.
1640 ;Otherwise retura here.
0498- CO 1641 RET NZ :
0498 21B81F 1642 LD HL,DISPBF+2
043C 3AE31F 1643 LD A,(STMINOR) ;Get register name.
049P CB47 1644 BIT O,A ;12 this register is
1645 . ;group leader, set decimal
1646 ;points of two central digits.
1647 ;Otherwise set two left digits.
- 04A1 2802 1648 JR Z2,L0CPT
04A3 23 1649 INC HL .
0444 23 1650 INC HL
04A5 CBF6 1651 LOCPT SET 6,(HL) ;Set decimal points of
: 1652 ; (EL) and (HL+1)
0447 23 1653 INC HL
04A8 CBFS - 1654 SET 6, (EL)
044AA CDC404 1655 CALL FCONV ;Convert user's flag (F,F')
1656 ;to bipary display fomat.
O04AD c9 1657 RET
1658 ;
1659 RGNADP:
18660 ; Get the patterps of register pames acd
1661 ; store them into DISPBPF and DISPBF+1.
1662 ; Input: A contains register count of
1663 ; pair leader.
1664 ; register destroyed: AF,DE,HL
1665
O4AE 21D007 1666 LD HL,RGTAB ;Get address of pattern
. 1667 : ;table.
04B1 85 1668 ADD AL
04B2 34 1669 LD L,A
04B3 S5E 1670 LD E,(HL) ;Get first pattera.
04B4 23 1871 INC HL
0485 58 1672 LD D,(HL) ;Get 2nd pattern.
04B6 EDS3BS1P 1873 . LD (DISPBF),DE
04BA c9 1674 RET
1875 ;
1676 LOCRGBF:
1677 ; Get the address of user's register. .
1678 ; Register name contained in STMINOR. .
1679 ; Destroys HL, AF.
1680
04BB 3AE31rF 1681 LD A, (STMINOR)
O4BE a1BCLr 1882 LOCHG LD HL,BREGBF
04C1 85 - 1683 ADD - A,L
04c2 6F 1684 LD L.,A
04C3 c9 1685 RET
1686 ;
1687 FCONV:
1688 ; Eccode or decode user's flag register.
1688 ; STMINOR contains the name of the flag
= 1690 ; being displayed now.
igg; ; register destroyed: AF,BC,HL.
04C4 3AE3L1F . 1693 Lp A, (STMINOR) ;Get register name.
04C7 B7 1684~ . OR A . ;Clear carry flag. -
04C8 1P 1895 RRA ;name of I register: 17H,
1696 ;pane of IFF: 16H.
1697 ;Rotate right one bit, both .
1668 ;become 0BE. :

Appendix 8 Page 23

LoC

04C9
04CB

Q4cCD

04CE
04D1
04D2
04D4
04D5
04D6

04D8
04DA
04DD
04EOQ
04E3
04E8

- 04K8

04EC
C4EF
04r2
04F5
O4F8
04F9

04FC
04FF
0502
0505

0508
0508
050B
0511
0514
0517

o518

0514

051B
051C
051D
O51E

0520
0522

OBJ CODE N STMT SOURCE STATEMENT

FEOB
2808

4F

21D21F
7E
ES01
77

79
FEOC

301P
3ABC1P
CD1805
22D41F
CD1805
22DK1F
3ACA41P
CD180G5
Z2D81F
CD1805
22DALP
cs
2AD4LF

CD2305
2AD61F
CD23405
32BCLF

2ADS8LF
CD2305
2ADALF
CD2305
32C41F
(o]}

0604
29

29
29
07
ED8A

10F8
co

1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709

1710

1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721

1722
1723
1724
1725
1726
1727
1728

1728
1730
1731

1732

1733

1734

17335

1736

1737

1738

1738

1740

1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761

.1762

1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780

cp
JR

LD

LD
LD
AND
LD
LD
FLAGX cp

JR
FOONV1 LD
CALL
LD
CALL
LD

~
LD

CALL
Lo
CALL
LD
RET
PCONV2 LD

CALL
LD
CALL
LD

LD
CALL
LD
CALL
LD
RET

DECODE:

(IR TR PR IE TR YR

LD
DRL4 - ADD

ADD
ADD
RLCA
ADC

DJNZ
RET

Appendix 8 Page 24

OBH

Z,PLAGX ;Junp to FLAGX it
;1 or IFF is being
;displayed now.

C,A ;O0therwise, mask ocut bit
;1 to bit 7 of user's IFF.

;IFP 48 only 1 bit, monitor

;use one byte to store it,
smasking out bit 1¢7 is to
;ignore the useless bits.

;This is done only when the
;user is rot modifyiog IPF.

;If uvser is modifying IFF,

;monitor will display wbatever
‘;he enters, even if bit 1¢7

;are oot all zero.
;A register is not changed
;after doing this.

HL,USERIF

As (BL)

000000018

(EL),A

A,C

OCH ;If STMINOR contains

;the narme of SZXH, XPNC,
:SZXE' or XPNC', after
;rotating right one bit
;it #will bhe greater than
;or equal to OCH.

;Decode user's flag it it

;is not being modified now,

;encode it otherwise.
NC,FOONV2
A,(USERAF) ;Get user's F register.
DECCDE ;Decode upper 4 bits.
(FLAGH) ,HL
DECODE ;Decode lower 4 bits.
(FLAGL)', BL
A, (UAFP) ;Get user's P' register.
DECCDE
(FLAGEHP) , HL
DECODE
(FLAGLP),EL

HL, (FLAGHR) ;Get the binary fomm
;0f 4 upper bits of
;user's F register.

ENCODEB ;Encode it.

HBL, (PLAGL) ;Encode 4 lower bits.

" ENCODE

(USERAFP),A ;Save the encoded
;result inoto USERAF.

HL,(FLAGHP) ;EBpncode F' register.

ENCODE

BL, (FLAGLP)

ENCODE

(UAFP),A

Decode bit 7¢4 of A register.

Each bit is extented to 4 bits.

0 becomes 0000, 1 becomes 0COL.

The output is stored in HL, which
.is 16 bits in length. Also, after
execution, bit 7¢4 of A register are
bit 3¢0 of A before execution.
Reglster AFP,B,EL are destroyed.

B,4 . ;Loop 4 times.

HL, BL ;Clear rightmost 3
;bits of HL.

- HL, HL

dL., BL

HL, BL ;The 4th bit of HL

’ ;18 determined by carry
;2lag, which 1s the MSB
;0f A register.

DRL4

LoC

0523

0525°

0526
0527
0528
0529

/ 052A
052C

052D
0530

0531
0532
0533
0535
0538
0529

0534
053D

053E
053F
0540
0541
0542

0543
0544
0545
0546

0548

0549
0544

0848
054C

OBJ CODE M STMT SQURCE STATEXMINT

0604

29

29
29
29
17

10F8
co

CD3A0S
pe

AF

EDA1
EA3205
B7

cg

21B1l1F
SE

23
56
23
4E
23

66
69
B7
ED52

4D

44
03

EB
Co -

1781 -

1782
1783
1784
1785
1786

1787 -

1788
1789
1780
1791

1792
1793
1794
1795
1796
1797
1798
1799
1800
1801

1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831

1832

1833
1834
1835
1836
1837
1838
1839
1840
1841

1842

1843

1844

1845
1846
1847

1848
1349
1850

1851

1852

1853

1854

1855

1858

1837
1858
1859

1860

ENCODE:

Encode HL register. Bach 4 bits of HL
are encoded to 1 bit. Q000 become 0,
0001 become 1. The result is stored
42 bit 3¢0 of A register. Also, after
execution, bit 7¢4 of A are bit 3¢0
before execution.

Registers AF,B,HL are destroyed.

LRI TE PR TR

4 LD B,4 ;Loop 4 times.
£RL4 ALD HL, BL ;Shift HL left 4 bits.
;Bit 12 of HL w%ill be
;shifted into carry flag.
ADD HL, 5L
ADD HL, EL
ADD HL, BL
RLA ;Rotate carry flag into
;A register.
DJINZ ERL4
RET

;.tttt“.ltttt#‘ttt't‘tt"8‘!.“#t"tttt“‘ll"t.“"t‘t.‘t#
SUN1: -

; Calculate the sun of the data in a menory

; block. The starting and ending address

; of this block are stored in STEPBF+2 ¢ STEPBP+4.

M Registers AFP,BC,LE,HL are destroyed.

CALL GETPTR ;Get parameters from
;step buffer.
RET C ;Return if the parameters
;are 1llegal.
SUNM:
; Calculate the sun of a menory bloeck.
HL contains the starting sddress of
this block, BC contains the length.
The result is stored in A. Registers
AF ,BC,HdL are destroyed.

e ma e wa

XOR A ;Clear A.
SUMCAL ° ADD A,(HL) ;Add

CPI

JP PE, SUMCAL

OR A ;Clear flags.

RET

»

GETPTR:

; Get parameters fror step buffer.

; Input: (STEPBF+2) and (STEPBF+3) contain
; starting address.

; (STEPBF+1) and (STEPBP+5) contain
; ending address.

; Output: HL register contains the starting
; address. .

; BC register coctains the length.
; Carry flay O -— BC positive

; 1l -= BC negative

; Destroyed reg.: AF,BC,DE, HL.

LD HL,STEPSF+2
GETP LD E,(HL) ;Load starting address
;into DE.
INC HL R
LD D, (HL)
* INC HL
LD C, (8L)
INC 2198 ;Load ending address
;into HL.
LD H, (HL)
LD L,C
OR A ;Clear carry flag.
SBC HL,DE ;Find difference.
:Carry flag is changed here.
LD C,L
LD B,H
-_INC BC . :Now BC contains the
;length.
EX - DZ,BE. - ;Now HL contairs the
;starting address.
‘RET

Appendix 8 Page 25

LOC

054D

054E
054F
0552
0553
0555

0558
0559

055A
Q55D
0SSP

0562
0564
0585
0567
056A

0568

0BJ CODE M

AF

08
CD5AQS
73
EDAL
EA4F05

(¢2-]
Cc9

CD&BOS
1608
CD6BOS

CB1B
15
20F8
CD6BO0S
Cc9

o F:]

STMT SOURCE STATEMENT

1861
1862
1863
1864
1885
1866
1867
1868,
1863
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1822
1893
1894
1895
1886
1837
1898
1899
1900
1801
1902
1803
1904
1905
1906
1907
1908
1909
1810
1911
1912
1813
1914
1815
1916
1917
1918
1919
1920
1921
1922
1923

-1924

1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1938
1940
1841
1942

»

TAPEIN:

; Load = merory block from tape.

; Input: FL —— starting address of the blcck
H BC -~ length of the block

; Output: Carry flag,l -— reading error
»
H

.

0 - no error
Destroyed reg. —-- AF,BC,DE,HL,AF' BC',DE',HL"

XOR A ;Clear carry flag.
:At beginning, the reading is
;RC error.

EX AF,AF'
TLOOP CALL GETBYTE ;Rezd 1 byte from tape.
LD (BEL),E ;Store it iato menory.
CPI
JP PE, TLOOP ;Loop until lengthb
;18 zero.
EX AF AP’
RET
14
GETBYTE:
Read ope byte from tape.
Output: E -~ data read
: Carry of F',1 -— readirg error

. 0 =~ po error
Destroy reg. —- AF,DE,AF',BC',DE',HL'
Byte fomat:

e ma e wrwe s

start bit bit bit bit bit bit bit bit stop
bit 0 1 2 3 4 5 6 7 bit

.r o

CALL GETBIT ;Get start bit.
LD D,8 ;Loop 8 times.
BLOOP CALL GETBIT ;Get one data bit.
- ;Result ip carry flag.

RR E ;Rotate it ioto E.
DEC D

JB NZ ,BLOOP

CALL GETBIT ;Get stop bit.
RET

ETBIT:

Read one bit from tape.

Qutput: Carry of P,0 -~ this bit is O
1 -~ this bit is 1

Carry of P',1 = reading error

0 == po error

Destroyed reg. —- AP,AF',BC',CE',HL'

Bit fomat:

wewe vt mewe mr e CYuws e

0 — 2K Hz 8 cycles + 1K Hz 2 cycles.
1 -~ 2K Hz 4 cycles + 1K Hz 4 cycles.

.. ue

EXX ;Save_ HL,BC,DE registers

The tape-bit format of both O and 1 are

of the same form: high fregq part + low freq part.

The differencce between 0 and 1 i5 the .

number high freg cycles and low freq

cycles. Thus, a high freq period may has

two meanings: : ’

i) It is used to count the number of high
freq cycles of the current tape~bit; *

11) If = high freg period is detected
immediately after a low freq period, then
this period is the first cycle of next
tape-bit and is used as 2 teminator of the
last tape-bit.

TR R R I I T T E T T

Bit 0 of H register 1s used to indicate the usage

of a high freg period. If this bit is zero, high
freq period causes counter increment for the current
tape-bit. If the high freg part has passed, bit ©

of H is set and the next high freq period will be used
&s a teminator.

L register is used to up/down count the number of periods.
when a high freg period is read, L is increased by

1; when @ low fregq period is read, L is decreased

by 2. (The time cduration for each count is 0.5 ms.)

At the end of a tape-bii, positive and negative L

We s W mI W W W W WY W NS

Appendix 8 Page 26

Loc OBJ CODE M STYHT SOURCE STATEMENT
1943 ,; stand for O and 1 respectively.

1944
056C 210000 1945 LD HL,.O ;Clear bit 0 of H,
1946 . ;S8et L to O.
0567 CDB05 1947 COUNT CALL PERIOD ;Read one period.
0572 14 1948 INC D ;The next 2 ipstruwctions
1949 : ;check if D is zero. Carry
. 1850 ;flag 1s not affected.
0573 15 1951 DEC D)
0574 2011 1852 JR NZ,TERR ;If D is not zero, jump
1953 ;to error routine TERR.
1954 ;(Because the period 1is too
1955 ;much lopger than that of 1K Hz.)
0576 3806 1956 JR C,SEORTP ;1f the period is short
1957 ; (2K Hz), Jump to SHORTP.
0578 2D 1958 DEC L ;The period is 1K Bz,
/ 1958 , ;decrease L by 2. And set
1960 ;bit 0 of H to indicate this
1961 ;tape-bit has passed high freq
: 1962 ;part and reaches its low freq part.
05793 2D 1963 DEC L :
0574 CBC4 1964 SET 0,H
087C 1EF1 1955 JR COONT
O57E 2C 1856 SHORTP INC L ;The period is 2 K Hz,
1967 ;increase L by 1.
OS7F CB44 1968 BIT 0,RB ;If the tape-bit has passed
1969 ;its nigh freq part, high frquency
197¢C : ;means this bit is all over and
1971 ;next bit has started.
0581 28EC 1972 JR Z,COUNT
1973 ;L = (# of 2K period) - 2*(# of 1K period)
0583 CB1S 1974 RL L
1975 4 0 === NCarry (L positive)
1976 3 1 === Carry (L nezative)
1977 sThe positive or nezative sign of
1978 ;L correspcnds to the tape-bit data.
1979 3'RL L' will shift the sign b1t cf
1980 ;L ipto carry flag. After this
1981 . sinstruection, the carry flag
1982 ;econtains the tape-bit.
0585 D3 1983 EXX ;Restore BC',DE' ,RL'
0586 c9 1984 RET
0587 08 1285 TERR EX AP AP’ .
0588 37 1986 scr ;Set carry flag of F' to ind!lcate error.
0589 08 1987 EX AF AP’
0584 D9 1988 EXX
058B CcS 1989 RET .
1990 -

1991 PERIOD:

1992 ; Wait the tape to pass one period.
1893 ; The time duration is stored in DE. Tke
1984 ; unit is loop count. Typical value for
1985 ; 2K Hz is 2B, for 1K Hz is 56.
1986 ; Use (56+28)/2 as threshold. The returned
1987 ; result is in carry flag. (1K == NC, 2K == C)
1998 ; Register AF and DE are destroyed. .
1939 . .
058C 110000 2000 . LD CE,O)
058P DBOO 2001 L1LOOPH IN A,(KIN) ;Bit 7 of port A is Tapein.
0591 13 2002 INC DE .
0592 17 2003 . RLA . -
0593 38FA 2004 JR . C,LOOPH ;Loop until input goes low.
0595 3EFF 2005 LD A,112111118 ;Echo the tape input to
2006 . ;8peaker on MPF-I.
05987 D302 2007 ouT (DIGIT),A
0599 DBOO 2008 LOOPL IN A,(KIN)
0598 13 2009 . INC DE
059C 17 2010 RLA
058D 30FA . 2011 JR NC,LOOPL ;Loop until input goes high.
059pP 3E7F 2012 - LD A,01112111B ;Echo the tape input to
: 2013 ;8peaker on MPF-I.
0541 D302 2014 our (DIGIT),A
05A3 7B 2015 LD AE ;Compare the result with
2016 ;the threshold. .
05A4 FE2A 2017 . T CP MPERIOD - - R
. 05A6 C9 2018 - -RET :
2079 ; ' -
2020 S*EFTLNBLAIEBESTENSIRISLECRASEEEEREELAIETERLETRRTLBEESS80S
2021 TAPEOUT: !

2022 ; Output a memory block to tape.

Appendix 8 Page 27

0SF6
O5F7
O5SF8
O5F9
O5FA
O5FB
O5FC
OSFD

0605
0807

0608
060D
0610

0612
0614
0616

0618
061B

061D
0620
0821
0622
0623

OBJ CODE M STMT

7E
2F
77
7E
2F
77
BE
co

DDES
21E61F
CB7E

2804
DD21A507

0604
CD2406
30F9

10r9
CBBE
DDE1

CD2406
38FB

217807
85
93
7E
co

2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122

2123

2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184

SOURCE STATEMENT

; Input: HL -- address to be check.

; Output: Zero flag =-- 0, ROM or ponexistant;
N 1, RAM.

; Destroyed reg.: AF.

3 Call: none

RAMCHX : :

LD A, (HL)
CPL

LD (BL),A
LD A, (HL)
CPL

LD (HL),A
cp (EL)
RET

EEEXRAREEREEIEESRAER LA RE SRS LA RAEN AR AREABE B A TS RET ARG ERARE X

Function: Scan the keyboard and display. Loop until
a key is detected. If the some key is already
pressed when this routine starts execution,
return when next .key is entered.

Ipput: IX points to the buffer contains display patterns.
6 LEDs require 6 byte data. (IX) coatains the
pattern for rightmost LED, (IX+5) contains the
Fattern for leftmost LED.

Qutput: internal code of the key pressed.

Destroyed reg. : AP, B, H.L, AP', BC', DE'.

All other registers except IY zre aiso
changed during execution, but they are
restored before return.

LY I N T

Call: SCAN1

SCAN:
PUSH IX ;Save IX.
LD HL,TEST
BIT 7,(HL) ;This bit is sert if the use

:has entered illegal xey. The
;dispilay will be disabled as
. & waroicg to the user. This
;is done by replacing the display
;buffer pointer IX by BLANK.
JR Z,SCPRE
LD IX,BLANK

; Wait until all keys are released for 40 ms.
; (The execution time of SCANl is 10 ms,
; 40 = 10 * 4.)

SCPRE LD B,4
sSCoNX CALL SCAN1
JR NC,SCPRE ;If any key 1s pressed, re-load

;the debounce counter B by 4.
DJINZ SCNX
RES 7,(BL) ;Clear error-flag.
POP IX ;Restore original IX.

; Loop until any key is pressed.

SCLOOP CALL SCAN1
JR C,SCLOOP

: Convert the key-position-code returned by SCAN1 to
; key-internal-code. This is done by table-lookup.
; The table used is EEYTAB.

KEYMAP LD HL,KEYTAB
ADD AL i
LD ‘L,A
LD A, (HL)
RET

EEERERXAFEXEXERABERTEXRRASR LSS ERETXREX XX EFARXIE NSRS RS REREES

Function: Scan keyboard and display one cycle.
Total execution time is azbout 10 ms (exactly
. 8.95 ms, 17812 clock states 8 1.79 MHz).)

Input: Same as SCAN.
Qutput: 1) no key during one scan

Carry flay -~ 1 .

i1) key pressed during one scan
Carry flag -- 0,
A -~ position code of the key pressed.

B¢ Mo MI We WL s w ws v e s

Appendix 8 ©Page 29

LOC OBJ CODE M STMT SOURCE STATEMENT

2188 If more than one key is pressed, A
21886 ; contains the largest position-code.
2187 ; , (This key is the last key scanned.)
2188 ; Destroyed reg: AF, AP', BC', DE'. (see comments on SCAN)
2189 ; Call: none.

2190

2191 SCAN1:

2182 ;In hardware, the display and keyboard are

2193 ;arranged as a 6 by 6 matrix. Each cloumn

2194 ;corresponds to one LED ard six key buttoans.

212% ;1n nomal operation, at most one column is

2196 active. Th1e pattern of the active LED is the
2197 ;cata ouvtput op port C of 8355 I. The data 1input
2198 ;from bit ¢S5 cf port A are the status of key
2199 ;btuttons ia the active colunn. All signals on
2200 ,;I/0 port are active low.

PN 2201
L0624 37 2202 SCP ;Set carry flag.
0625 (o} 2203 EX AF AP’
0626 D8 2204 EXX
22¢C5

2206 ;Carry flag of F' is used to return the status of
2207 ;the keyboard. If any key is pressed duriag oae

2208 ;scan, the flag is rescet; otherwise, it is set.

2208 ;Initially, this flag is set. A' register ls used
2210 ;to store the position-code of the key presced.

2211 ;In this routin~, 36 key positions are checked one
2212 ;by one. C register contains the code of the kay
2213 ;being checked. The value of C 1s 0 at tae bezinning,
2214 ;and is increased by 1 after each checkx. So the code
2215 ;ranges from O to 23H (total 36 positions). Oa each
2216 ;check, i{f the innut bit 15 0 (kev pressed), C register
2217 ;is copied into A'. The carry flag of F' is set alsc.
2218 ;When some key is detected, the key positions after
2219 ;this key will still be checked. So if more than
2220 ;one key are pressed during one scan, the code of the
2221 ;last one will be returned.

2222 -
0627 OEQQ 2223 LD c,0 ;Initial position code
0629 1ECI 2224 LD E,11000001B ;Scan from rightmcst digit.
0628 2606 2225 LD H,6
22286 ;to the active colunso.
062D 7B 2227 KCOL LD AE
062E D302 2228 ouT (DIGIT),A ;Activete .2 colunm.
0630 DD7TEOOQ 2229 LD A, CIX) . : .
0633 D301 2230 ouT {(SEG7),A
0635 06C9 2231 LD B,COLDEL
0637 10FE 2232 DJINZ $;Delay 1.5 ms per digit.
0633 F 2233 XOR A ;Deactivate all display segments
0634 D301 2234 oUT- (SEG7),A '
063C 7B 2235 LD AE
063D P4 2236 CcPL .
Q63E F&C0 2237 OR 110000008
0640 D302 2238 ouT (DIGIT),A
0642 0606 2239 LD B,6 ;Each column has 6 keys.
0644 DBOO 2240 IN A,(KIN) ;Now, bit O¢5 of A contain
2241 ;the status of the 6 keys
2242 ;in the active coluamn.
0646 57 2243 LD ‘D,A ;Store A into D.
0647 CB1A 2244 KROY RR D ;jRotate D 1 bhit right, bit O
i 2245 ; of D will be rotated into -
2246 ;jcarry flag.
0849 3802 2247 JR C,ROEKEY ;Skip next 2 instructions
: 2248 s1f the key is not pressed.
2249 ;The next 2 instructions
2250 ;store the current -position-code
2251 sinto A' and reset carry flag
2252 ‘;of P' register.
0648 79 2253 : LD ‘A,C ;Key-in, get key position.
064C °08 2254 EX AF ,AF' ;Save A & Carry in AF'.
064D, o] 2255 NOKEY INC c ; Increase current key-code by 1.
064E 10F7 2256 DJINZ XKRO¥ ;Loop until 6 keys ian the
2257 ;active colums are all checked.
0650 DD23 2258 INC Ix .
0652 78 2259 LD AE
0653 EB3F 2260 LAND 00111111B
0655 CBO7 2261 ° "RLC A
0657 F6CO 2262 OR 110000008 .
. 0659 5F . 2263 LD E,A
065A 25 2264 DEC :§
0658 20D0 2265 JR NZ,ECOL - -) s

Appendix 8 Page 30

LoC
065D
0660
0662
06863
0664

0665
0658
08669
065C
068D
0670

0671
0674
0877

0678
0679
067C
067D
067E
087F
0680
osgl
0682
0683
0686
0887
0688

0689
0684
0€8D
068F
06390
0891
0692

0683

OBJ CODE X ST™MT

SOURCE STATEMENT

11FAFF 2266 LD DE,-6
DD1g9 2267 ADD I1X,DBE ;Get original IX.
D9 2268 EXX
08 2269 EX AP AF'
c9 2270 RET
2271
2272 N ;#“tt“."‘tltl“it“‘it#‘t‘t"tttt#t‘.ttt"*".’a.‘tl“‘tt
2273 ; Function: Convert the 2 byte data stored in DE to
2274 7-segament display fomat. The output is stored
2275 in the address field of DISPBF (display buffer),
2276 most significiant digit in DISPBF+5.
2277 ; This routine is usinlly used by monitor only.
2278 ; Destroyed reg: AF, HL.
2279 ; Call: HEX7SG
2280
2281 ADDRDP:
21B81F 2282 LD HL,DISPBF+2
7B 2283 LD A,E
CD7806 2284 CALL HEX7SG
74 2285 LD A,D ~.
CD7806 2288 CALL HEX7SG -
(o4°] 2287 RET
2288 ;
2289 ;-‘tt#‘#‘t‘“tttttt*t#“ttt“‘.‘tttttt“*,tttatt‘###t‘tt““‘
2230 ; Punction: Convert the data stored in A to 7-segament
2291 ; display fomat. 1 byte is converted to 2
2292 digits. The result is stored in the data
2293 ; field of display buffer (DISPBF).
2294 ; This routine is uswally used by monitor oaly.
2295 ; Destroyed reg: AF, HL.
2296 ; Call: HEX7SG
2297
2298 DATADP:
21B61F 2289 LD HL, DISPBF
CD7806 2300 CALL HEX7SG
C9 2301 RET
2302
2303 ;tttt#ttit‘#“‘t#tttttt"“‘t"“t“tttt‘t‘t‘tl.‘t#!ttt"‘tt
2304 ; Function: Convert binary data to 7-segament display
2305 ; fomat.
2306 ; Input: 1 byie in A register.
2397 ; EL points to the result buffer.
2308 ; Output: Pattern for 2 digits. Low order digit in (HL),
2309 high order digit in (BL+1l).
2310 ; EL becomes EL+2.
2311 ; Destory reg: AF, HL.
2312 ; Call: BEX7
2313
2314 LEX73G:
FS5 2315 PUSH AF
CD8906 2316 CALL HEX7
77 2317 LD (BEL),A
23 2318 INC HL
F1 2319 POP AP -
OF 2320 RRCA ‘
OF 2321 RRCA
CcF 2322 RRCA
OF 2323 RRCA
CD8906 2324 CALL HEX7
77 2325 LD (BEL),A
- 23 2326 INC HL
c9 2327 RET
2328 ;
2329 ;tttt‘#tttt###tltlttt‘ltt!‘it‘t"‘#t"tt‘ttltt“‘!lt!".l!03‘
2330 ; Function: Convert binary data to 7-segament display
2331 ; fomat.
2332 ; Input: A -— LSB 4 bits contains the binary data
2333 ; Outpur: A -=- display pattern for 1 digit.
2334 ; Destroyed reg: AF
2335 ; Call: pone
2336
' 2337 HEX7:
ES 2338 PUSH HL
21FP007 2338 LD HL,SEGTAB
E60F 2340 AND OFH
85 2341 ADD A,L
6F 2342 LD L,A
78 2343 LD A, (BL)
El 2344 PCP 19
cs 2345 RET
2346 ; .
2347
Appendix 8 Page 31

LOC

0694
0697
D69A
068D
069F
0640
06A2
Q6A5

06A8
06A9
08AC
06AP
06B1
06B2
06B3

06B6
0688
0E6BB
06BD

06C0

06C3
06CS5
06Cs

o6C3

06CB
06CC
06CF
0600
06D3
- 0806
o6eD8

06DA

Q6DD
06DE

0737
0737
0738
073A
0738

OBJ CODE M STMT

210018
010008
CDFE0sS
2801
76
EDA1
EASAO6
c7

210000
010008
CD3105
2801
76

Cc7
32ES1F

3ES55
32P01F
3E44
32F11F

21F21F
362F
23
3600

C3D803

FS
21F11F
4E
2AF21F
3AFOLF
FESS
2003

CDE405
Fl

C3E900

1BO1

05
0A

2348
2349
2350
2351
2382
2383
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2372
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386

. 2387

2388
2389
2390
2391
2392
2393
2394
2385
2398
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428

SOURCE STATEMENT
:tt‘tttt.tttttt‘t:tttt.ttttt‘ttt‘tt!tt“t‘t“t‘lt‘tt‘t‘t'ttu

Function: RAM 1800-1FPF self-check.

Input: none

Output: none

Destroyed reg: AP, BC, HL

MIEIR IR IR IR

Call: RAMCHK

RAMTEST:
LD HL, 18008
LD BC, 800H

RAMT CALL RAMCHE
JR Z,TNEXT
HALT ;If error.

TNEXT CPI
JP PE, RAMT .
RST [s] ;Display *uPP=--1°.

;“*tttt‘tt’tt‘tt‘ttl#ttt“‘ttttt“.."ttl#‘t’l‘t“t‘.‘tlttt
;Monitor ROM self-check. Add the data of address

;0000 ¢ 0800. If the sum eguals to 0. Reset the monitor
;and display 'uPP--~1'. 1If the sum is not 0, which
;indicates error, EBALT.

;Input: none.

;Output: none.

;Destroyed registers: AF, BC, HL.
;Call: SUM.
ROMTEST:
LD HL,C
LD BC,800H
CALL SUX
JR Z,SUMOK
HALT ;If error.
SUMOK RST [s} ;Display 'uPFP~-1°,
INI3 LD (POVERUP);A ;Load power—code into
; (POWERUP). The monitor
;uses the location to declde
;whether a reset signal is
) ;on power-up.
LD A,55H '
LD (BEEPSET),A '
LD A, 448 .
LD (FBEEP) ,A ;Beep frequency when key is
;pressed.
LD HL, TBEEP i .
LD (HL),2FH ;Time duration of beep when
INC HL
LD (BL),0
;key is pressed.
JP INI4 ,
BEEP PUSH AF
LD BL,FBEEP
LD C, (BL)
LD HL, (TBEEP)
LD A, (BEEPSET)
cp 55H
JR NZ,NOTONE ;There is no beep sound when

;the key is pressed if data

;of (BEEPSET) is not 55H
CALL TONE
NOTONE:
POP AP
JP EEYEXEC ;After a key is detected,determine

;what action should the monitor take.
;KEYEXEC uses the next 3 factors
;to get the entry point of proper
;service routine :key~code, STATE
;and STMINOR (Minor-State).

Below are the branch tables for each key and

state.. The first entry of each table is

a base address, other entrys are the«offset to

this address. Offset is only oge byte long,

which is mwh shorter than the 2~byte address.

This can save the monitor code space.

W wemo My ws We

ESUBFON ORG 0737H
DEF¥ KINC
VEFB ~KINCHIKNC
DEFB ~KINC+KDEC
DEFB ~EINC+KGO

Appendix 8 Page 32

Loc OBJ CODE M STMT SOURCE STATEMENT

073C P 2429 DEFH -KINC+XSTEP
0730 1A 2430 DEFB -KINC+KDATA
0738 2C 2431 DEFB -KINC+ESBR
073F 42 2432 DEFB . ~KINC+KINS
0740 7B 2433 EFB ~KINC+KDEL
0741 €201 2434 KFON DEFW EPC
0743 00 2435 DEFB -KPC+EPC
0744 1C 2436 DEFB ~EPC+KADDR
0745 0OA 2437 DEFB ~KFC+ECBR
0746 14 2438 DEFB -KPC+KREG
0747 20 2439 DEFB -KPC+KMV
0748 20 2440 DEFB ~KPC+KRL.
0748 26 2441 DEFB -KPC+ZWT
074A 26 2442 DEFB -KPC+ERT
0748 ECO1 2443 HATAB DEFW BFIX
074D 00 2444 DEFB -HF IX+HFIX
074E 16 2445 DEFB ~EP IX+HAD
0747 03 2446 DEFB -HP IX+KCA
0750 25 2447 DEFB ~HP IX+HRGFIX
0751 34 2448 DEFSB -HF IX+IMV
0752 34 2449 DEFB -EF IX+HRL
0753 34 2450 DEFB -HF IX+HAT
0754 34 2451 DEFB -HF IX+ART
0755 26 2452 DEFB -HF IX+HRGAD
0756 44 2453 DEFB -HF IX+HRGDA
0757 3DO2 2454 ITAB DEFW IPIX
0759 00 2455 DEFB -IPIX+IFIX
0758 02 - 2456 DEFB -IPIX+IAD
0758 03 2457 DEFB -IZIX+IDA
075C 00 2458 DEFB -IFIX+IRKGFIX
075D OE 2459 DEFB ~IPIX+IMV
075E OE 2460 DEFB -IPIX+IRL
O075FP OE 2461 DEFB -IFIX+IWT
0760 OE 2462 DEFB -IFIX+IRT
0761 1F 2463 DEFB -IFIX+IRGAD
0762 1F 2464- DEFB -IF IX+IRGDA
0763 6BO2 2465 DTAB ‘DEFW DFIX
0765 00 2468 DEFB -DFIX+DPIX
0766 03 2467 DEFB -DF IX+DAD
0767 03 2468 DEFB ~DF IX+DDA
0768 o©C 2469 DEFB -DF IX+DRGF1X
0769 OF 2470 DEFB ~DF IX+DHYV
0766 OE 2471 DEFB -~DF IX+DRL
076B OE 2472 DEFB -~DP IX+DWT
076C OE 2473 DEFB ~DF IX4DRT
076D 1F 2474 DEFB ~DF IX+DRGAD
076E 1F 2475 DEFB -DF IX+DRGDA
076F 9902 2476 GTAB DEFW GFIX
* 0771 oo 2477 . DEFB ~GFIX+GFIX
0772 03 2478 DEFB -GF IX+GAD
0773 03 2479 DEFB ~GFIX+GDA
0774 00 © 2480 DEFB -GFIX+GRGPIX
0775 4B 2481 DEFB ~GFIX+GMV
0776- 6D 2482 DEFB -GF IX+GRL .
0777 8B . 2483 DEFB ~GPIX4GWT .
0778 Ci 2484 DEFB -GPIX+GRT
0779 00 2485 DEFB -GP IX+GRGAD
077A 00 2486 DEFE ~GF IX+GRGDA

2487 .

2488 ; Eey-position-code to key-internal-code conversion table.

2489

2490 KEYTAB:
0778 03 2481 KO DEFB 03H ;HEX 3
077C 07 2492 K1 DEFS 078 SHEX 7
077D OB 2493 K2 DEFB 08H ;HEX B
0778 OF 2484 K3 DEFB QFR ;EEXF
077F 20 2495 K4 DEFB 208 = ;NOT USED
0780 21 2496 K5 DEFB 21H - sNOT USED
0781 02 2497 K6 DEFB 02H ;HEX 2
0782 08 2498 K7 DEFB 06H “;HEX" 6
0783 ©0A 2499 K8 DEFB CAH SHEX A
0784 OE 2500 K9 DEFB OEH :HEXE
0785 22 2501 KOA DEFB 22H ;NOT USED
0786 23 2502 KOB DEFB 234 ;NOT USED
0787 oO1 2503 EKOC DEFB O1H ;HEX 1
0788 05 2504 KOD DEFB 05H sHEX' 5
0788 09 2505 KOE - DEFB 08H ;HEX™9
0788 OD 2506 KOP DEFB ODH sHEX'D
0788 13 2507 K10 DEFB 13H ;STEP
078C— 1F 2508 K11 DEFB 1PH ;sTAPERD
078D . .00 2509 K12 DEFB OOH ;HEX 0O
Q78E 04 2510 K13 DEFB 04H ;HEX 4

Appendix 8 "Page 33

LOC 0BJ CODE M STMT SOURCE" STATEMENT

078F
0730
0791
0792
0793
0754
0795
0796
0797
0788
0799
0794
0798
075C
078D
Q798

079F
0740

~07A1

0742
0743
. 0TA4
- 07A5
0746
07A7
07A8
0749
07AA
0743
07AC
074D
07AE
O7AF
07B0
0781
0782
0783
0784
0785
0786
0787
0788
0789
078A
07BB
078C
07BD
07BE
O7BF
07C0
07C1
07c2
07c3
07C4
07CS,
07C6
07C7
o7cs
07C9
07cA
07CB
07cc
07CD
07CE
07CF
0700
o702
07D4
0708
07D8
07DA
07DC
O7DE
07E0
07B2
0784
07E6
07E8

08
ocC
12
1E
1A
18
iB
18
17
1D
15
11
14
10
16
1c

30
02
02
oF
1F
Al
00
00
00
00
00
00
Q3
03
8F
02
17
AE
0z
AE
B6
AE
17
AE
02
03
03
8F
00
AE
8F
B3
00
AE
B3
Q0
0o
OF
AE -
8P
00
oF
00

- 00

Qo0
02
BE
8r
03
OF3F
8DA7
8FB3

8537.

4F3F
CDA7
CPB3
€537
0730
B630
1FAE
OF30
370F

2511
2512
2513

2514

2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592

Appendix 8

K14
Ki5
K16
K17
K18
K19
K1lA
K1lB
K1C
K1D
K1lE
K1F

K21

BLANK

ERR

SYS_SP

ERR_SP

STEPTAB

REG

RGTAB

DEFB 03H
DEFB OCH
DEFB 12H
DEFB 1EH
DEFB - 1AH
DEFB 18H
DEFB 1BH
DEFB 19H
DEFB 17H
DEFB 1DE
DEFB 188
DEFB 118
DEFB 14H
DEFB 108
DEFB 16H
DEFB 1CH
DEFB 030H
DEFB 0021
DEFB 002K
DEFB OFH
DEFB 1FH
DEFB OAlH
DEFB 4]
DEFB 0
DEFB o
DEFB o]
DEFB 0
DEFB 0
DEFB 3
DEFB -3
DEFB 8FH
DEF3 2
DEF3B 1FH
DEFB OAEH
DEFB 02RH
DEFB OAEH
DEFB 0B6H
DEFB OAER
DEFB 1FH
DEF38 OAEH
DEFB 02
DEFB 03
DEFB c3
DEFB 8Frd
DEFB 0
DEFB OAEH
DEFB 08FH
DEFB OB3H
DEFB o]
DEFB QAER
DEFB OB3H
DEFB (s}
DEFB 0
DEFB OFH
DEFB OAEH
DEFB O8FH
DEFB 0
DEFB OFH
DEFB ¢}
DEFB o}
DEFB 0
DEFB 02H
DEFB OBEH
DEFB 08FH
DEFB 03H
DEFW 3FOFH
DEFW OA78DH
+ DEFW OB38FH
DEFW 3785H
DEFY 3P4FH
DEFW OA7CDH
DEFW OB3CFH
DEFW 37C5H
DEFW 3007H
‘DEF¥ 3CB6H
DEFW . OAE1FH
DEFW 300FH
DEFW OF37H
Page 34

g
!Bl
'E‘
[]
'p'
'sl
et
!Sl
'Yl
;'S'
HS
- 's'

Y TR TR TR TR T

I3
’
;IR'
»
;

;v?'
:IPU

| .y
;'G.
;IEI
;IR'
;!AFI
;'Bcl
;IDEI
- 'HLI
Srar.
;'BC.
; 'DE.
; 'HL.

prIxe

- 'IY'
:lsbl
jraee

3 'FE*

- - - -

/
/

LoC
O7EA
07EC
O7EE

:ZL%«.E._,Q
-Q7P1
07F2
- Q7TF3
O7F4
O7FS5
07F6
O7F7

O7F8

07F9
O7FA
07FB
07FC
O7FD
O7FE
O7FF

1F9F
1F9FP
1FAF
1FAF
1FB8&

1PBC
1FBE
1FCO
1FC2
1PC4

1FPC6 .

ipce
1FCA
1rCC
1FCE
1FDO
1FD2
1FD4
1FD6
1FD8
1FDa
1FDC

1FDE

1FS0
1FE2
1FE3
1FE4
1PES
1FE6

1FE7
1FES
1FEA
1FEE

1FFO
1FP1
1FF2

:

OBJ CODE ¥ STMT SOURCE STATEMENT

850F
770F
C50F
BD
30
23}
BA
36
AR
AF
38
BF
BE
3F
A7
8D
B3
8F
OF

2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2612
2643
2644
2645
2645
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659

SEGTAB

DEFW
DEFW
DEF?¥
DEFB
DEFB

DEFB-

DEFB
DEFPB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB

OF85H
OF778
OFC5H
OBDH
30H
09BH
OBAH
“3¢H
OAEH
QAPH
380
OBFH
OBEH
3FH
OATH
08DH

0834

08Fd
OFH

;lnl
s 'FH. *

H
PR RN SRR R AR AR RN EACIREIRAI NIRRT TSI AT L SRS S S LN RIEERE R
;SYSTEM RAM AREA:

USERSTK

ORG

* DEFS

SYSSTK:
STEPBF
DISPBF
REGBP:
USERAF
USERBC
USERDE
USERHL
UAFP
UBCP
UDEP
UHLP
USERIX
CSERIY
USERSP
USERIF
FLAGH
FLAGL
FLAGEP
FLAGLP
USERPC

ADSAVE

BRAD
BRDA
STMINOR
STATE
POWEREOP
TEST

ATEMP
HLTEMP
TENP
IM1AD

BEEPSET
FBEEP
TBEEP

ORG
DEFS
DEFS

DEP3
DEFS
DEFS
DEFPS
DEFS
DEFS
DEF3
DEPS
DEFS
DEPS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS

DEFS

DEFS
DEFS
DEFS
DEFS
DEFS
DEZ?S

DEFS
DEFS
DEPS
DEFS

DEFS
DEFS
DEFS
END

Appendix 8

1P9FH
16

1PAFH

[N R S LI - I X NDRONNMDODNNNDNNMNNNNDDDOND O~

;Contains the address being
;displayed now.

;Break point address

;Data of break point address
;dinor state

;State

;Power-up initialization

;Flag, bit € -~ se&t when function

; or suwfunction key is hit.
H bit 7 -- set when illegal key
H is epterad.

1 ;Terporary storage .

2 ;Tenporary storage

4 ;See comments on routine GDA.

2 ;Contains the address of Opcode 'FF’
;service routine. (BST 38H, mode
;1 interrupt, etc.)

1 ;Default value is 55H

1 ;Beep frequency

2 ;Time duration of beep

‘Page 35

CROSS REFERENCE
SYMBOL VAL M DEFN REFS

ADDRDP
ADSAVE

ATEMP
BEEP
BEEPSE
BITEND
BLANK
BLOOP
BR1
BRAD
BRANCH
BRDA
BRRSTO
BRTEST
~ CLRBR
COLDEL
CONT28
COUNT
DAD
DATADP
DDA
DECODE
DPIX

DIGIT
DISPBF

DMV
DOMV
DRGAD
DRGDA
DRGF IX
DRGNA
DAL
DRL4
DRT
DSTEP
DTAB
DWT
EIDI
ENCODE
ENDPUN
ENDTAP
BRL4
ERROR
ERR_
ERR_SP
P1KHZ
F2KHZ
PBEEP
FCONV
PCONV1
PCONV2
FILEDP
FLAGH
PLAGHP
PLAGL
PLAGLP
FLAGX
GAD
GDA
GETBIT
GETBYT
GETP
GETPTR
GFIX

GNV
GRGAD
GRGDA
GRGFPIX
GRL
GRT
GTAB
GWT
BAD
EDA
BEX7
HEX73G

0685
1FDE

1FE7
06CB
1FFO’
05D9
07A5
055F
0115
1FEO
0380
1FE2
00D4
0421
03DE
00Cs
003E
0ser
026E
0671
026E
0518
028B

0002
1FB6

0279
0187
028A
028A
C26B
0285
0279
051A
0279
0286
0763
0279
0282
0523
031C
034D

' 0525

0353
07A9
07BS
0041
001F
1FF1
04C4
04DA
04F9
038A
1FD4
1FD8
1rPD6
1FDA

04D6
028C

"029C

0568
055A
053D
0534
0298

02E4
0299
0289
0299
0308
0354
076F
0324
0202
Ol1EF
0689
0878

2281 1282
2639 283
914
2650 221
2399 384
2656 2338
2087 2061
2537 1349
1895 18929
514 525
2641 229
1301 431
2642 230
362 351
1470
1378 742
27 2231
217 163
1947 1965
968 2467
2298 1467
969 2468
1758 1733
983 2465
2474
16 115
2619 348
2282
981 2470
672 724
995 2474
996 2475
964 2469
1006 1004
980 2471
1769 1778
978 2473
992 989
2465 534
979 2472
1048 1046
1781 1746
1175 1135
1218 12¢8
1791 1799
1221 1119
2541 1221
2553 328
29 2086
31 2088
2657 2320
1687 756
1732
1743 1731
1265 1266
2633 1734
2635 1739
26341736
2636 1741
1722 1700
1023 2478
1024 2478
1504 18893
1882 1874
1841 1113
1827 1210
1017 2476
*2485
1112 672
1019 2485
1020 2488
1018 2480
1144 2482
1226 2484

1462
596
218
238

2403
2146

535
364
455
362

1972

1735
2466
2475
237
441
2299

1748
1141

1167

2400
1655

1743
1751
1747
1753

1895

1278
2477
2486
2481

2476 544

1182 2483
839 2445
822 2448

2337 2318

2314 2284

cmee - HPIX =3B = B16 2443

2452

2324
2286
2444
2453

1523 1638
618 681
99 973
274 280

545
602 1G24
515
1477

1738 1740

692 732 745 793
1077 1176 1458 1€33

1386 1474

822 839

2466 2467 2468 2469 2470 2471 2472 2473

279 1091
858 1447

1752 1754
1219

1189 1285 1288 1296

1900

1809

2007 2014 2004 2230 2238
1454 1483 1527 1535 1642 1673

2477 2478 2479 2480 2481 2482 ‘2483 2484

2300

2444 2445 2446 2447 2448 2449 2450 2451
Page 36

Appendix R

CROSS REFERENCE
SYMBOL VAL M DEFN REFS
BLTEMP 1FE8 2851 162 239 281 287
HYV 0220 871 2448
ERGAD 0212 855 2452
HRGDA €230 888 2453
HRGZIX 0212 856 2447
HRL ‘0220 870 2449
HRT 0220 868 2451
HTAB 0748 2443 513
BT 0220 869 2450
IAD 0240 813 2456
'igﬁx 0240 914 2457
023D 908 2454 2455 2455 24562457 2458 24 ‘
’ 2403 243 59 2460 2461 2462
IGNORE 03BB 13368 557 580 594 600 616 630 643 692 708 719
. 816 3825 910 936 855 8891 1020
IM1AD 1PEE 2653 207 1373
INV 024B 926 .2459
INI a3C1 1347 123
INI1 03C7 1363 1368
INI2 03Ceo 136413635
INI3 0683 2382 1371
INI4 03D8 1372 2397
IRGAD C25C 841 2463
IRGDA 025C 042 2464
IRGFPIX 022D 809 2458
IRGNA 0Z&7 252 950
IRL 0248 925 2460
IRT 024B a23 2462
ISTEP 0238 937 @832
ITAB 0757 2454 3524
vz 024B 924 2461
EOQ 0778 2491
KO0A 0785 2501
£0B 0788 2502
KOC 0737 2503
KOD 0788 2504.
KQE 0789 2505
KOF 0784 2508
K1 077C 2482
K10 0788 2507
K11 078C 2508 .
Ki2 078D 2509
K13 078E 2510
K14 ‘078F 2511
K15 0780 2512
K16 0791 2513
K17 0792 2514
K18 0733 2515
K19 0794 2516
K1A 0795 2517
K1B 0796 2518
E1C 0797 2519
k1D 0798 2520
_K1E 0798 2521
K1p 079A 2522
X2 077D 2493
K26 0758 2523
21 079C 2524
K22 078D 2525 .
xa3 07%E 2526 .

K3 Q77E 2494
K4 Q77F 2495
K5 0780 2496
K8 0781 2497
K7 0782 2498
K8 0783 2499
K9 0784 2500

EADDR (QlDE 764 2436

KCBR 01CcC 738 2437

ECOL 062D 2227 2265

KDATA Q135 §65 2430

KDEC 0120 528 2427

XDEL 0196 686 2433

KEYEXE 00E9 392 2411

EEYMAP 061D 2169

KEYTAB 077B 2490 2168

EFUN 0741 2434 453

KGO 0125 538 2428 .

KHEX o111 507 403)

KIN 0000 18 2001 2008 2240 :
KINC 011B 518 2425 2426 2426 2427 2428 ‘2429 2430 2431 2432 2433

Appendix 8 Page 37

CROSS REFERENCE
SYMBOL VAL M DEFN REPS

‘LINS
KXV
KPC
KR EG
KRL
KROW
ERT
KSBR
£3TEP
XSUBFU

XWT
LEAD
LEADL
LEAD2
LOCPT
LOCRG
LOCRGB
LOCSTB
LOCSTN
L.OOPH
LOOPL
MAIN
ME¥DP1
MEMDP2
MPERIOD
MPF I
KVUP
NMI
NOXEY
NOTONE
oLooP
ONE 1K
ONE_2K
OUTG
0UT1
QITBIT
OUTBYT
P82£5
PERIOD
PCWERU
PRECL1
PRECL2
PREOUT
PREPC
PACODE
RAMCHK
RAMT
RAMTES
RECBF
REGDPS
REGDPS
RIG
RESET1
RESET2
RGNADP
RGSAVE
AGSTIN
RGTAB
ROMTES
R3T28
BEST3C
R3T38
SAV1Z2
SCAR
SCaN1
SCLOOP
SCONX
SCPRE

SEG7
SEGTAB
SETIF
SETPT
SETPTL
SETSTO
SEORTP

SEIPHL
SEKIPH2
SQYAVE
STATE
STEPBF

015D
O1E2

01C2’

01Ds6
O1E2
0647
0lES8
0147
0124
0737
OlES
0360
0367
0371

0445

04BE
C4EB
0455
045F
058F
0599
QODE
0402
040B
0024
0797
0300
0056
064D
06DD
0587
0004
0004
05C9
05D2
05C4
058B1
0003
058C
1FES
03EE
O3FA
0243
0021
00AS5
Q5F6
0694
0694
1FBC
0473
0477
07CA
0032
0054
O4AE
0074
0479
07D0
0646
0cls
0030
0038
0412
OSFE
0624
0618
060D
0508
0001
07F0
00A4
0434
0433
00Dpo
OS7E
0183
C1B8
OSEA
1PE4
1FAFP

610
787
727
750
780
2244
801
537
548
2424
797
1229
1236
1250
1651
1682
1676
1538
1550
2001
2008
379
1444
1451
33
2531
1136
2686
2255
2409
2042
47
48
2057
20863
2050
2033
15
1981
2645
1402
1416
1038
133
19
2110
2358
2355
2620
1600
1606
2574
is8l

248.

1859
281
1611
2580
2375
143
i5¢
194
1458
2138
2181
2162
2183
2152
17
2596
320
1487
148€
353
198¢
645
721
2034
2644
2618

2432
2439
2434
2438
2440
2256
2442
2431
2429

430
2441
1240

1246

1251
1648
1628
888
871
830
2004
2011
387
768
371
2017
258
1128
174
2247
2405
2045
2066
2064

2056
2041
2028

107.

12386
121
827
840
562
131
122
130

2362

1049
864
582
753
140
183

1624

1604

1666

1450
381
1265
2163
2156
2145
1230
2339
318
1491
1481
263
1956
641
717
2029
361
623
1132
1545

A
e

2435 2435 2436°2437 2438 24389 2440 2441 2442

1258 1272

1519
9838 1531

851
574 604 682 733 746 835 919 974 1177

1372

2043 2047
278
1250 1947
2382

860 1422
875

1370

331 334 598 628 707 824 2358
1882

837 952 1006

1364 2153 2162

2154
1277 2228 2234
1530

332 335 347 1222

ggg 514 1396 1456 1556 1617 1637

645 680 708 721 723 796 1112 1122
1144 1153 1192 1198 12i8 1227 1254 1260 1252
1840 Ppage 38

“Appendix 8

CROSS REFERENCE

SYMBOL VAL M DEFN

STEPDP
STEPTA
STMINO

soM
SUM1
SOMCAL
S0MOK
8SYSSTK
SYS sp
TAFEIN
TAPEOU
TBEEP
TE4P.
TEAR
TEST
TESTY
TESTRG
TLOOP
TNEXT
TONE
TONE1K
TONE2K
UAFP
UBCP
UDEP
UHELP
USERAP
USERBC
USERDE
USERHL
USERIP
USERIX
USERIY
USERPC
USERSP
USERST
ZERO_1
ZERO 2
- 230

0434
078C
1FPE3

0531
0520
€532
0632
1FAF
C7AF
054D
05A7
1FF2
1FEA
0587
1FES
03ES
0l3E
054F

- 0640

05E4
05DE
05E2
1PC4
1FC6
1PC8
1FCA
1FEC
1FBE
1FCO
1FC2
1FD2
1FCC
1FCE
1PDC
1FDO
1F9F
0002
0008
0071

1513
2560

- 2643

1813
1803
1321
2381
2617
23547
1262
2021
2838
2652
1988
2646
13889
578
1874
2361
2080
2083
2088
. 2625
2828
2627
26238
2621
2622
2623
2624
2632
2829
2630
2637
2631
2615
49
S0
20

PR

AppendixiB

REPS
305
1564
451
1681
2373
1183
1823
2379
116
341
1257
1203
2392
1036
1952
252
552
571
1877
2359
2087
1197
1209
1737

1068

181

289
133
250
249
2060
2058
191

885

859
16893

1290

322

1287
1213
2402
1048

413
569

2408
2087
1217
1755

1092

312

285
288
345

937 992
8926 942 881 996 1543 1569 1618 1643

380

2030
1079 1034 1228 1267

1337 1408 1413 2138
592 614 690

2059 2065

1732 1749
320 1037 1069 1717

731
328 1067

‘Page 39

N : /188D =
4, R) . . L
;y E 2 b
15 EYILL OF MAOTERIAL LLISTING
K : L
bR EOM H# =91 —COO80O THE FOX———MT —=OZ
X LINE COMPONENT DESCRIPTION QTY LVL
L 1 101 ~0005 EOM REV F 1
2 413-0171 FOX EXPNSN BRDY ASSY 1 1
IO 2 711-0234 FOX EXPNSN PC BD R/7R 1 2
. 4 S503-0098 SN74LS00 1 2
v 5 S503-0121 SN74LS15S 1 2
Y & SO3-0124 74LSRET 7 2
7 [OI-0125 RCA CDA0ARAE 2 2
S SO3-0128 SN74L3148% 1 2
i @ SO3-0129 SN74LS245 1 2
- 10 SOR-0218 SN74LS7 1 2
11 SO2-0097 SN7A4LS02 i 2
' 12 SOI-0183 7418373 1 2
. 13 FO3-002P SN7407 1 2
14 SO3-0120 SN74LS04 1 2
' 15 - 1 ‘ 1
. ... 16 - 1 1
_ 17 - 1 1
i is 511-00239 CCRES 1741 1k OHM S% 2 2
1 511-0042 CORES 1780 10K QHM 5% 7 2
20 511 -0090 CCRES 1/78W 100K OHM S% 2 2
21 S1&-0002 10K, COM SIF 9RES 2 2
2 51&=-0003 100K COM SIP 9 RES 1 2
23 S16-0001 1K SERIES SIP 4RES 4 2
; 2 - 1 1
25 - 1 1
2é& - 1 1
! 27 - 1 1
: 28 - 1 1
- = S24-0033 10UF TAN CAP 20V 1. 5¢ 4 2
S S0 S20-0005 CER CAP . 01 MFD. SOV = 2
21 - 1 1
, a2 - 1 1
) 33 - 1 1
34 - 1 1
s S01-000% INAQOOX DIODE 2 2
) 26 S01-0031 INDSS DIODE — 1 2
- 37 S51-0005 MINI RED LED 100 CENT= 1& 2
a8 &IR-00VI FOX SKI1O/IF 43 SKT LBL 1 2
" 39 33-0094 Fax IF33 SKT LBL 1 2
. - 40 S79-0001 8 POSN DIFP SWITCH 2 2
41 415-0001 SHK10-PL UNIV SKT NEW 1 2
42 415-0018 SK~-50 IF-33 HF SKT R/- 1 2
. 43 415-0021 SK10 HALF/IF44 RA 1 2
44 S40-D020 3446-58-520-801 CONNEDA 1 2
, 45 6£15-0041 #4X1:4 NYLON SPACER 4 2
- T &OF~Q0S® - 4-40X1/2“FLHD SCREW _______ .. 7. 2
47 &OS—-007S #4-30X7/8 FL HD 4 2
- 48 ,&07-0001 #4 SPLIT LW 1/32 11. 2
.. 49 SO&=000Y ___ _ _ 4-40X3/16% HEANUT SMAL 11 2

. £ 2. L
OF MATERIAL LISTIRNNSG

b =3 F SIE BN
= 4
L INE COMFONENT

. S0 S42~-0005
51 542-0008
52 S532-0033
53 S542-0016&
54 C HIAZ-OUVE
35 S99-0014
S& S71-0015
57 S572-0010
S8 420017
S S546-000%
S0 - 1
&1 - 1

- &2 - i
&3 412-001&
&4 H20-0012

— &5 . &E3I3-0092
A& &11-0006
&7 735-0004
&8 SOS—007 &
&v &19-0017
70 &£19-0018
71 I3-009VS
72 - 1
73 413-0172
74 0 &19-0015
75 &19-0016
7& SOS=0025
77 SV&E~0O0D
vi- F04-0013
7o SQ4-0009
S0 &17-0010
81 &16=-0012
a2 S04-0005
83 - 1
s4 - 1
85 |801-0244

Amnondiv 0

B3R — OO

— [e e e me s e em vm e

THE FOX———MT —SO0OZ

ary

DESCRIFTION LvL
14 FPIN DIF SKT STD.

1& PIN RIF SKT STD . 1
20FIN DIF SKT COM STD

40 FIN DIF SKT COM STD

FOX SFKR/7BD LEL

20 COND FLEX CABRLE 210

SFET FWR SWITCH ALCO

SFDT PE St { SHAKDQW)

24 FIN DIP SET CDOM STD

3 SMM FHONE JATE 2C0ND

MNN:.A}JNMN.HU'

HOUSING ASSY FOX

FOX CASE PFC

FOX PACKAGSE LAREL
REER BMPRS SMITH #2451
MPROF MOD W/ 9V ADPTR
&=1wX1/2 PLSTTE BLE

FX KYFD RTMR PLTE R/7A
FINISH FQR &190017

EqL ADDRY & LOGO W/B

HHMI"})HJ}HH.H

HEAT SINK PLATE ASSY
FQX BD HEATSINK
FINISH FOR &190013
4-40 X 174" PAN HD. ST
J-40X2r186 HEXNUT SHAL
LM320T-12 7912 CELC
LM240T—-12/7 7812 KO
TO-220 NYLON BUSHING
TSIl FAD 7403-09FR-354
MQT 7808C

[S B SV S S VY I 1Y B U T Y

o BRI N R RN R RPN RS SRR RN S s R s RN N

FOxX USER MAN R7A 1

nama N

